Cargando…
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
In recent years, several convolutional neural network (CNN) methods have been proposed for the automated white matter lesion segmentation of multiple sclerosis (MS) patient images, due to their superior performance compared with those of other state-of-the-art methods. However, the accuracies of CNN...
Autores principales: | Valverde, Sergi, Salem, Mostafa, Cabezas, Mariano, Pareto, Deborah, Vilanova, Joan C., Ramió-Torrentà, Lluís, Rovira, Àlex, Salvi, Joaquim, Oliver, Arnau, Lladó, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413299/ https://www.ncbi.nlm.nih.gov/pubmed/30555005 http://dx.doi.org/10.1016/j.nicl.2018.101638 |
Ejemplares similares
-
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
por: González-Villà, Sandra, et al.
Publicado: (2017) -
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2019) -
Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling
por: Valverde, Sergi, et al.
Publicado: (2015) -
A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2017) -
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021)