Cargando…
Gaussian mixture model for texture characterization with application to brain DTI images
A Gaussian mixture model (GMM)-based classification technique is employed for a quantitative global assessment of brain tissue changes by using pixel intensities and contrast generated by b-values in diffusion tensor imaging (DTI). A hemisphere approach is also proposed. A GMM identifies the variabi...
Autores principales: | Moraru, Luminita, Moldovanu, Simona, Dimitrievici, Lucian Traian, Dey, Nilanjan, Ashour, Amira S., Shi, Fuqian, Fong, Simon James, Khan, Salam, Biswas, Anjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413310/ https://www.ncbi.nlm.nih.gov/pubmed/30899585 http://dx.doi.org/10.1016/j.jare.2019.01.001 |
Ejemplares similares
-
Combining Sparse and Dense Features to Improve Multi-Modal Registration for Brain DTI Images
por: Moldovanu, Simona, et al.
Publicado: (2020) -
Grey-Wolf-Based Wang’s Demons for Retinal Image Registration
por: Chakraborty, Sayan, et al.
Publicado: (2020) -
Quiescent optical solitons with complex Ginzburg–Landau equation having a dozen forms of self–phase modulation
por: Arnous, Ahmed H., et al.
Publicado: (2023) -
Dispersive optical solitons and conservation laws of Radhakrishnan–Kundu–Lakshmanan equation with dual–power law nonlinearity
por: Arnous, Ahmed H., et al.
Publicado: (2023) -
Towards Accurate Diagnosis of Skin Lesions Using Feedforward Back Propagation Neural Networks
por: Moldovanu, Simona, et al.
Publicado: (2021)