Cargando…
Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability
BACKGROUND: Imaging techniques used to measure hippocampal atrophy are key to understanding the clinical progression of Alzheimer's disease (AD). Various semi-automated hippocampal segmentation techniques are available and require human expert input to learn how to accurately segment new data....
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413347/ https://www.ncbi.nlm.nih.gov/pubmed/30553759 http://dx.doi.org/10.1016/j.nicl.2018.10.012 |
_version_ | 1783402799082504192 |
---|---|
author | Hurtz, Sona Chow, Nicole Watson, Amity E. Somme, Johanne H. Goukasian, Naira Hwang, Kristy S. Morra, John Elashoff, David Gao, Sujuan Petersen, Ronald C. Aisen, Paul S. Thompson, Paul M. Apostolova, Liana G. |
author_facet | Hurtz, Sona Chow, Nicole Watson, Amity E. Somme, Johanne H. Goukasian, Naira Hwang, Kristy S. Morra, John Elashoff, David Gao, Sujuan Petersen, Ronald C. Aisen, Paul S. Thompson, Paul M. Apostolova, Liana G. |
author_sort | Hurtz, Sona |
collection | PubMed |
description | BACKGROUND: Imaging techniques used to measure hippocampal atrophy are key to understanding the clinical progression of Alzheimer's disease (AD). Various semi-automated hippocampal segmentation techniques are available and require human expert input to learn how to accurately segment new data. Our goal was to compare 1) the performance of our automated hippocampal segmentation technique relative to manual segmentations, and 2) the performance of our automated technique when provided with a training set from two different raters. We also explored the ability of hippocampal volumes obtained using manual and automated hippocampal segmentations to predict conversion from MCI to AD. METHODS: We analyzed 161 1.5 T T1-weighted brain magnetic resonance images (MRI) from the ADCS Donepezil/Vitamin E clinical study. All subjects carried a diagnosis of mild cognitive impairment (MCI). Three different segmentation outputs (one produced by manual tracing and two produced by a semi-automated algorithm trained with training sets developed by two raters) were compared using single measure intraclass correlation statistics (smICC). The radial distance method was used to assess each segmentation technique's ability to detect hippocampal atrophy in 3D. We then compared how well each segmentation method detected baseline hippocampal differences between MCI subjects who remained stable (MCInc) and those who converted to AD (MCIc) during the trial. Our statistical maps were corrected for multiple comparisons using permutation-based statistics with a threshold of p < .01. RESULTS: Our smICC analyses showed significant agreement between the manual and automated hippocampal segmentations from rater 1 [right smICC = 0.78 (95%CI 0.72–0.84); left smICC = 0.79 (95%CI 0.72–0.85)], the manual segmentations from rater 1 versus the automated segmentations from rater 2 [right smICC = 0.78 (95%CI 0.7–0.84); left smICC = 0.78 (95%CI 0.71–0.84)], and the automated segmentations of rater 1 versus rater 2 [right smICC = 0.97 (95%CI 0.96–0.98); left smICC = 0.97 (95%CI 0.96–0.98)]. All three segmentation methods detected significant CA1 and subicular atrophy in MCIc compared to MCInc at baseline (manual: right p(corrected) = 0.0112, left p(corrected) = 0.0006; automated rater 1: right p(corrected) = 0.0318, left p(corrected) = 0.0302; automated rater 2: right p(corrected) = 0.0029, left p(corrected) = 0.0166). CONCLUSIONS: The hippocampal volumes obtained with a fast semi-automated segmentation method were highly comparable to the ones obtained with the labor-intensive manual segmentation method. The AdaBoost automated hippocampal segmentation technique is highly reliable allowing the efficient analysis of large data sets. |
format | Online Article Text |
id | pubmed-6413347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-64133472019-03-21 Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability Hurtz, Sona Chow, Nicole Watson, Amity E. Somme, Johanne H. Goukasian, Naira Hwang, Kristy S. Morra, John Elashoff, David Gao, Sujuan Petersen, Ronald C. Aisen, Paul S. Thompson, Paul M. Apostolova, Liana G. Neuroimage Clin Article BACKGROUND: Imaging techniques used to measure hippocampal atrophy are key to understanding the clinical progression of Alzheimer's disease (AD). Various semi-automated hippocampal segmentation techniques are available and require human expert input to learn how to accurately segment new data. Our goal was to compare 1) the performance of our automated hippocampal segmentation technique relative to manual segmentations, and 2) the performance of our automated technique when provided with a training set from two different raters. We also explored the ability of hippocampal volumes obtained using manual and automated hippocampal segmentations to predict conversion from MCI to AD. METHODS: We analyzed 161 1.5 T T1-weighted brain magnetic resonance images (MRI) from the ADCS Donepezil/Vitamin E clinical study. All subjects carried a diagnosis of mild cognitive impairment (MCI). Three different segmentation outputs (one produced by manual tracing and two produced by a semi-automated algorithm trained with training sets developed by two raters) were compared using single measure intraclass correlation statistics (smICC). The radial distance method was used to assess each segmentation technique's ability to detect hippocampal atrophy in 3D. We then compared how well each segmentation method detected baseline hippocampal differences between MCI subjects who remained stable (MCInc) and those who converted to AD (MCIc) during the trial. Our statistical maps were corrected for multiple comparisons using permutation-based statistics with a threshold of p < .01. RESULTS: Our smICC analyses showed significant agreement between the manual and automated hippocampal segmentations from rater 1 [right smICC = 0.78 (95%CI 0.72–0.84); left smICC = 0.79 (95%CI 0.72–0.85)], the manual segmentations from rater 1 versus the automated segmentations from rater 2 [right smICC = 0.78 (95%CI 0.7–0.84); left smICC = 0.78 (95%CI 0.71–0.84)], and the automated segmentations of rater 1 versus rater 2 [right smICC = 0.97 (95%CI 0.96–0.98); left smICC = 0.97 (95%CI 0.96–0.98)]. All three segmentation methods detected significant CA1 and subicular atrophy in MCIc compared to MCInc at baseline (manual: right p(corrected) = 0.0112, left p(corrected) = 0.0006; automated rater 1: right p(corrected) = 0.0318, left p(corrected) = 0.0302; automated rater 2: right p(corrected) = 0.0029, left p(corrected) = 0.0166). CONCLUSIONS: The hippocampal volumes obtained with a fast semi-automated segmentation method were highly comparable to the ones obtained with the labor-intensive manual segmentation method. The AdaBoost automated hippocampal segmentation technique is highly reliable allowing the efficient analysis of large data sets. Elsevier 2018-10-14 /pmc/articles/PMC6413347/ /pubmed/30553759 http://dx.doi.org/10.1016/j.nicl.2018.10.012 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Hurtz, Sona Chow, Nicole Watson, Amity E. Somme, Johanne H. Goukasian, Naira Hwang, Kristy S. Morra, John Elashoff, David Gao, Sujuan Petersen, Ronald C. Aisen, Paul S. Thompson, Paul M. Apostolova, Liana G. Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability |
title | Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability |
title_full | Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability |
title_fullStr | Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability |
title_full_unstemmed | Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability |
title_short | Automated and manual hippocampal segmentation techniques: Comparison of results, reproducibility and clinical applicability |
title_sort | automated and manual hippocampal segmentation techniques: comparison of results, reproducibility and clinical applicability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413347/ https://www.ncbi.nlm.nih.gov/pubmed/30553759 http://dx.doi.org/10.1016/j.nicl.2018.10.012 |
work_keys_str_mv | AT hurtzsona automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT chownicole automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT watsonamitye automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT sommejohanneh automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT goukasiannaira automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT hwangkristys automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT morrajohn automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT elashoffdavid automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT gaosujuan automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT petersenronaldc automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT aisenpauls automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT thompsonpaulm automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability AT apostolovalianag automatedandmanualhippocampalsegmentationtechniquescomparisonofresultsreproducibilityandclinicalapplicability |