Cargando…

(CF)(2) architecture: contextual collaborative filtering

Recommender systems have dramatically changed the way we consume content. Internet applications rely on these systems to help users navigate among the ever-increasing number of choices available. However, most current systems ignore the fact that user preferences can change according to context, res...

Descripción completa

Detalles Bibliográficos
Autores principales: Bachmann, Dennis, Grolinger, Katarina, ElYamany, Hany, Higashino, Wilson, Capretz, Miriam, Fekri, Majid, Gopalakrishnan, Bala
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413629/
https://www.ncbi.nlm.nih.gov/pubmed/30956536
http://dx.doi.org/10.1007/s10791-018-9332-3
Descripción
Sumario:Recommender systems have dramatically changed the way we consume content. Internet applications rely on these systems to help users navigate among the ever-increasing number of choices available. However, most current systems ignore the fact that user preferences can change according to context, resulting in recommendations that do not fit user interests. This research addresses these issues by proposing the [Formula: see text] architecture, which uses local learning techniques to embed contextual awareness into collaborative filtering models. The proposed architecture is demonstrated on two large-scale case studies involving over 130 million and over 7 million unique samples, respectively. Results show that contextual models trained with a small fraction of the data provided similar accuracy to collaborative filtering models trained with the complete dataset. Moreover, the impact of taking into account context in real-world datasets has been demonstrated by higher accuracy of context-based models in comparison to random selection models.