Cargando…
Integration of single-cell RNA-seq data into population models to characterize cancer metabolism
Metabolic reprogramming is a general feature of cancer cells. Regrettably, the comprehensive quantification of metabolites in biological specimens does not promptly translate into knowledge on the utilization of metabolic pathways. By estimating fluxes across metabolic pathways, computational models...
Autores principales: | Damiani, Chiara, Maspero, Davide, Di Filippo, Marzia, Colombo, Riccardo, Pescini, Dario, Graudenzi, Alex, Westerhoff, Hans Victor, Alberghina, Lilia, Vanoni, Marco, Mauri, Giancarlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413955/ https://www.ncbi.nlm.nih.gov/pubmed/30818329 http://dx.doi.org/10.1371/journal.pcbi.1006733 |
Ejemplares similares
-
A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect
por: Damiani, Chiara, et al.
Publicado: (2017) -
MaREA4Galaxy: Metabolic reaction enrichment analysis and visualization of RNA-seq data within Galaxy
por: Damiani, Chiara, et al.
Publicado: (2020) -
popFBA: tackling intratumour heterogeneity with Flux Balance Analysis
por: Damiani, Chiara, et al.
Publicado: (2017) -
Computational Strategies for a System-Level Understanding of Metabolism
por: Cazzaniga, Paolo, et al.
Publicado: (2014) -
INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation
por: Di Filippo, Marzia, et al.
Publicado: (2022)