Cargando…

Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort

Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical sympto...

Descripción completa

Detalles Bibliográficos
Autores principales: Cury, Claire, Durrleman, Stanley, Cash, David M., Lorenzi, Marco, Nicholas, Jennifer M., Bocchetta, Martina, van Swieten, John C., Borroni, Barbara, Galimberti, Daniela, Masellis, Mario, Tartaglia, Maria Carmela, Rowe, James B., Graff, Caroline, Tagliavini, Fabrizio, Frisoni, Giovanni B., Laforce, Robert, Finger, Elizabeth, de Mendonça, Alexandre, Sorbi, Sandro, Ourselin, Sebastien, Rohrer, Jonathan D., Modat, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414401/
https://www.ncbi.nlm.nih.gov/pubmed/30529631
http://dx.doi.org/10.1016/j.neuroimage.2018.11.063
_version_ 1783402964903264256
author Cury, Claire
Durrleman, Stanley
Cash, David M.
Lorenzi, Marco
Nicholas, Jennifer M.
Bocchetta, Martina
van Swieten, John C.
Borroni, Barbara
Galimberti, Daniela
Masellis, Mario
Tartaglia, Maria Carmela
Rowe, James B.
Graff, Caroline
Tagliavini, Fabrizio
Frisoni, Giovanni B.
Laforce, Robert
Finger, Elizabeth
de Mendonça, Alexandre
Sorbi, Sandro
Ourselin, Sebastien
Rohrer, Jonathan D.
Modat, Marc
author_facet Cury, Claire
Durrleman, Stanley
Cash, David M.
Lorenzi, Marco
Nicholas, Jennifer M.
Bocchetta, Martina
van Swieten, John C.
Borroni, Barbara
Galimberti, Daniela
Masellis, Mario
Tartaglia, Maria Carmela
Rowe, James B.
Graff, Caroline
Tagliavini, Fabrizio
Frisoni, Giovanni B.
Laforce, Robert
Finger, Elizabeth
de Mendonça, Alexandre
Sorbi, Sandro
Ourselin, Sebastien
Rohrer, Jonathan D.
Modat, Marc
author_sort Cury, Claire
collection PubMed
description Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease.
format Online
Article
Text
id pubmed-6414401
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-64144012019-03-22 Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort Cury, Claire Durrleman, Stanley Cash, David M. Lorenzi, Marco Nicholas, Jennifer M. Bocchetta, Martina van Swieten, John C. Borroni, Barbara Galimberti, Daniela Masellis, Mario Tartaglia, Maria Carmela Rowe, James B. Graff, Caroline Tagliavini, Fabrizio Frisoni, Giovanni B. Laforce, Robert Finger, Elizabeth de Mendonça, Alexandre Sorbi, Sandro Ourselin, Sebastien Rohrer, Jonathan D. Modat, Marc Neuroimage Article Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease. Academic Press 2019-03 /pmc/articles/PMC6414401/ /pubmed/30529631 http://dx.doi.org/10.1016/j.neuroimage.2018.11.063 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cury, Claire
Durrleman, Stanley
Cash, David M.
Lorenzi, Marco
Nicholas, Jennifer M.
Bocchetta, Martina
van Swieten, John C.
Borroni, Barbara
Galimberti, Daniela
Masellis, Mario
Tartaglia, Maria Carmela
Rowe, James B.
Graff, Caroline
Tagliavini, Fabrizio
Frisoni, Giovanni B.
Laforce, Robert
Finger, Elizabeth
de Mendonça, Alexandre
Sorbi, Sandro
Ourselin, Sebastien
Rohrer, Jonathan D.
Modat, Marc
Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort
title Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort
title_full Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort
title_fullStr Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort
title_full_unstemmed Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort
title_short Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort
title_sort spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: initial application to the genfi cohort
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414401/
https://www.ncbi.nlm.nih.gov/pubmed/30529631
http://dx.doi.org/10.1016/j.neuroimage.2018.11.063
work_keys_str_mv AT curyclaire spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT durrlemanstanley spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT cashdavidm spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT lorenzimarco spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT nicholasjenniferm spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT bocchettamartina spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT vanswietenjohnc spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT borronibarbara spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT galimbertidaniela spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT masellismario spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT tartagliamariacarmela spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT rowejamesb spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT graffcaroline spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT tagliavinifabrizio spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT frisonigiovannib spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT laforcerobert spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT fingerelizabeth spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT demendoncaalexandre spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT sorbisandro spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT ourselinsebastien spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT rohrerjonathand spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT modatmarc spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort
AT spatiotemporalanalysisfordetectionofpresymptomaticshapechangesinneurodegenerativediseasesinitialapplicationtothegenficohort