Cargando…
Optofluidic vapor sensing with free-space coupled 2D photonic crystal slabs
We report here a compact vapor sensor based on polymer coated two-dimensional (2D) defect-free photonic crystal slabs (PCS). The sensing mechanism is based on the resonance spectral shift associated with the Fano resonance mode in the PCS due to the vapor molecule adsorption and desorption induced c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414601/ https://www.ncbi.nlm.nih.gov/pubmed/30862849 http://dx.doi.org/10.1038/s41598-019-41048-w |
Sumario: | We report here a compact vapor sensor based on polymer coated two-dimensional (2D) defect-free photonic crystal slabs (PCS). The sensing mechanism is based on the resonance spectral shift associated with the Fano resonance mode in the PCS due to the vapor molecule adsorption and desorption induced changes in both polymer thickness and polymer refractive index (RI). Sensitivity due to RI and thickness change were theoretically investigated respectively. With three different thicknesses of OV-101 polymer coating, sensitivity and response time were experimentally evaluated for hexane and ethanol vapors. The polymer demonstrated roughly four times higher sensitivity towards the hexane vapor than ethanol vapor. The PCS sensor with thicker polymer coating showed higher sensitivity to both hexane and ethanol vapors but exhibiting longer response time. |
---|