Cargando…
Dental integration and modularity in pinnipeds
Morphological integration and modularity are important for understanding phenotypic evolution because they constrain variation subjected to selection and enable independent evolution of functional and developmental units. We report dental integration and modularity in representative otariid (Eumetop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414606/ https://www.ncbi.nlm.nih.gov/pubmed/30862801 http://dx.doi.org/10.1038/s41598-019-40956-1 |
Sumario: | Morphological integration and modularity are important for understanding phenotypic evolution because they constrain variation subjected to selection and enable independent evolution of functional and developmental units. We report dental integration and modularity in representative otariid (Eumetopias jubatus, Callorhinus ursinus) and phocid (Phoca largha, Histriophoca fasciata) species of Pinnipedia. This is the first study of integration and modularity in a secondarily simplified dentition with simple occlusion. Integration was stronger in both otariid species than in either phocid species and related positively to dental occlusion and negatively to both modularity and tooth-size variability across all the species. The canines and third upper incisor were most strongly integrated, comprising a module that likely serves as occlusal guides for the postcanines. There was no or weak modularity among tooth classes. The reported integration is stronger than or similar to that in mammals with complex dentition and refined occlusion. We hypothesise that this strong integration is driven by dental occlusion, and that it is enabled by reduction of modularity that constrains overall integration in complex dentitions. We propose that modularity was reduced in pinnipeds during the transition to aquatic life in association with the origin of pierce-feeding and loss of mastication caused by underwater feeding. |
---|