Cargando…
Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior
Heavy metal toxicity is an ecological concern in regions affected by processes like mining, industry, and agriculture. At sufficiently high concentrations, heavy metals are lethal to honey bees, but little is known about how sublethal doses affect honey bees or whether they will consume contaminated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414635/ https://www.ncbi.nlm.nih.gov/pubmed/30862878 http://dx.doi.org/10.1038/s41598-019-40396-x |
Sumario: | Heavy metal toxicity is an ecological concern in regions affected by processes like mining, industry, and agriculture. At sufficiently high concentrations, heavy metals are lethal to honey bees, but little is known about how sublethal doses affect honey bees or whether they will consume contaminated food. We investigated whether honey bees reject sucrose solutions contaminated with three heavy metals – cadmium, copper, and lead – as a measure of their ability to detect the metals, and whether ingesting these metals altered the bees’ sucrose sensitivity. The metals elicited three different response profiles in honey bees. Cadmium was not rejected in any of the assays, and ingesting cadmium did not alter sucrose sensitivity. Copper was rejected following antennal stimulation, but was readily consumed following proboscis stimulation. Ingestion of copper did not alter sucrose sensitivity. Lead appeared to be palatable at some concentrations and altered the bees’ sensitivity to and/or valuation of sucrose following antennal stimulation or ingestion of the metal. These differences likely represent unique mechanisms for detecting each metal and the pathology of toxicity. The bees’ ability to detect and consume these toxic metals highlights the risk of exposure to these elements for bees living in or near contaminated environments. |
---|