Cargando…
Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414645/ https://www.ncbi.nlm.nih.gov/pubmed/30862943 http://dx.doi.org/10.1038/s41598-019-39627-y |
_version_ | 1783403014548094976 |
---|---|
author | Saheki, Takeyori Moriyama, Mitsuaki Kuroda, Eishi Funahashi, Aki Yasuda, Izumi Setogawa, Yoshiko Gao, Qinghua Ushikai, Miharu Furuie, Sumie Yamamura, Ken-ichi Takano, Katsura Nakamura, Yoichi Eto, Kazuhiro Kadowaki, Takashi Sinasac, David S. Furukawa, Tatsuhiko Horiuchi, Masahisa Tai, Yen How |
author_facet | Saheki, Takeyori Moriyama, Mitsuaki Kuroda, Eishi Funahashi, Aki Yasuda, Izumi Setogawa, Yoshiko Gao, Qinghua Ushikai, Miharu Furuie, Sumie Yamamura, Ken-ichi Takano, Katsura Nakamura, Yoichi Eto, Kazuhiro Kadowaki, Takashi Sinasac, David S. Furukawa, Tatsuhiko Horiuchi, Masahisa Tai, Yen How |
author_sort | Saheki, Takeyori |
collection | PubMed |
description | Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD(+) ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency. |
format | Online Article Text |
id | pubmed-6414645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64146452019-03-14 Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model Saheki, Takeyori Moriyama, Mitsuaki Kuroda, Eishi Funahashi, Aki Yasuda, Izumi Setogawa, Yoshiko Gao, Qinghua Ushikai, Miharu Furuie, Sumie Yamamura, Ken-ichi Takano, Katsura Nakamura, Yoichi Eto, Kazuhiro Kadowaki, Takashi Sinasac, David S. Furukawa, Tatsuhiko Horiuchi, Masahisa Tai, Yen How Sci Rep Article Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD(+) ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency. Nature Publishing Group UK 2019-03-12 /pmc/articles/PMC6414645/ /pubmed/30862943 http://dx.doi.org/10.1038/s41598-019-39627-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Saheki, Takeyori Moriyama, Mitsuaki Kuroda, Eishi Funahashi, Aki Yasuda, Izumi Setogawa, Yoshiko Gao, Qinghua Ushikai, Miharu Furuie, Sumie Yamamura, Ken-ichi Takano, Katsura Nakamura, Yoichi Eto, Kazuhiro Kadowaki, Takashi Sinasac, David S. Furukawa, Tatsuhiko Horiuchi, Masahisa Tai, Yen How Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
title | Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
title_full | Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
title_fullStr | Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
title_full_unstemmed | Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
title_short | Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
title_sort | pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414645/ https://www.ncbi.nlm.nih.gov/pubmed/30862943 http://dx.doi.org/10.1038/s41598-019-39627-y |
work_keys_str_mv | AT sahekitakeyori pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT moriyamamitsuaki pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT kurodaeishi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT funahashiaki pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT yasudaizumi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT setogawayoshiko pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT gaoqinghua pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT ushikaimiharu pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT furuiesumie pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT yamamurakenichi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT takanokatsura pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT nakamurayoichi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT etokazuhiro pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT kadowakitakashi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT sinasacdavids pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT furukawatatsuhiko pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT horiuchimasahisa pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel AT taiyenhow pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel |