Cargando…

Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model

Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of...

Descripción completa

Detalles Bibliográficos
Autores principales: Saheki, Takeyori, Moriyama, Mitsuaki, Kuroda, Eishi, Funahashi, Aki, Yasuda, Izumi, Setogawa, Yoshiko, Gao, Qinghua, Ushikai, Miharu, Furuie, Sumie, Yamamura, Ken-ichi, Takano, Katsura, Nakamura, Yoichi, Eto, Kazuhiro, Kadowaki, Takashi, Sinasac, David S., Furukawa, Tatsuhiko, Horiuchi, Masahisa, Tai, Yen How
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414645/
https://www.ncbi.nlm.nih.gov/pubmed/30862943
http://dx.doi.org/10.1038/s41598-019-39627-y
_version_ 1783403014548094976
author Saheki, Takeyori
Moriyama, Mitsuaki
Kuroda, Eishi
Funahashi, Aki
Yasuda, Izumi
Setogawa, Yoshiko
Gao, Qinghua
Ushikai, Miharu
Furuie, Sumie
Yamamura, Ken-ichi
Takano, Katsura
Nakamura, Yoichi
Eto, Kazuhiro
Kadowaki, Takashi
Sinasac, David S.
Furukawa, Tatsuhiko
Horiuchi, Masahisa
Tai, Yen How
author_facet Saheki, Takeyori
Moriyama, Mitsuaki
Kuroda, Eishi
Funahashi, Aki
Yasuda, Izumi
Setogawa, Yoshiko
Gao, Qinghua
Ushikai, Miharu
Furuie, Sumie
Yamamura, Ken-ichi
Takano, Katsura
Nakamura, Yoichi
Eto, Kazuhiro
Kadowaki, Takashi
Sinasac, David S.
Furukawa, Tatsuhiko
Horiuchi, Masahisa
Tai, Yen How
author_sort Saheki, Takeyori
collection PubMed
description Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD(+) ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency.
format Online
Article
Text
id pubmed-6414645
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64146452019-03-14 Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model Saheki, Takeyori Moriyama, Mitsuaki Kuroda, Eishi Funahashi, Aki Yasuda, Izumi Setogawa, Yoshiko Gao, Qinghua Ushikai, Miharu Furuie, Sumie Yamamura, Ken-ichi Takano, Katsura Nakamura, Yoichi Eto, Kazuhiro Kadowaki, Takashi Sinasac, David S. Furukawa, Tatsuhiko Horiuchi, Masahisa Tai, Yen How Sci Rep Article Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD(+) ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency. Nature Publishing Group UK 2019-03-12 /pmc/articles/PMC6414645/ /pubmed/30862943 http://dx.doi.org/10.1038/s41598-019-39627-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Saheki, Takeyori
Moriyama, Mitsuaki
Kuroda, Eishi
Funahashi, Aki
Yasuda, Izumi
Setogawa, Yoshiko
Gao, Qinghua
Ushikai, Miharu
Furuie, Sumie
Yamamura, Ken-ichi
Takano, Katsura
Nakamura, Yoichi
Eto, Kazuhiro
Kadowaki, Takashi
Sinasac, David S.
Furukawa, Tatsuhiko
Horiuchi, Masahisa
Tai, Yen How
Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
title Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
title_full Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
title_fullStr Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
title_full_unstemmed Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
title_short Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
title_sort pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414645/
https://www.ncbi.nlm.nih.gov/pubmed/30862943
http://dx.doi.org/10.1038/s41598-019-39627-y
work_keys_str_mv AT sahekitakeyori pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT moriyamamitsuaki pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT kurodaeishi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT funahashiaki pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT yasudaizumi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT setogawayoshiko pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT gaoqinghua pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT ushikaimiharu pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT furuiesumie pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT yamamurakenichi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT takanokatsura pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT nakamurayoichi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT etokazuhiro pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT kadowakitakashi pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT sinasacdavids pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT furukawatatsuhiko pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT horiuchimasahisa pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel
AT taiyenhow pivotalroleofinterorganaspartatemetabolismfortreatmentofmitochondrialaspartateglutamatecarrier2citrindeficiencybasedonthemousemodel