Cargando…
Using Machine Learning to Measure Relatedness Between Genes: A Multi-Features Model
Measuring conditional relatedness between a pair of genes is a fundamental technique and still a significant challenge in computational biology. Such relatedness can be assessed by gene expression similarities while suffering high false discovery rates. Meanwhile, other types of features, e.g., prio...
Autores principales: | Wang, Yan, Yang, Sen, Zhao, Jing, Du, Wei, Liang, Yanchun, Wang, Cankun, Zhou, Fengfeng, Tian, Yuan, Ma, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414665/ https://www.ncbi.nlm.nih.gov/pubmed/30862804 http://dx.doi.org/10.1038/s41598-019-40780-7 |
Ejemplares similares
-
Measurement of Conditional Relatedness Between Genes Using Fully Convolutional Neural Network
por: Wang, Yan, et al.
Publicado: (2019) -
Deep forest ensemble learning for classification of alignments of non-coding RNA sequences based on multi-view structure representations
por: Li, Ying, et al.
Publicado: (2020) -
Multi-label Deep Learning for Gene Function Annotation in Cancer Pathways
por: Guan, Renchu, et al.
Publicado: (2018) -
Author Correction: Multi-label Deep Learning for Gene Function Annotation in Cancer Pathways
por: Guan, Renchu, et al.
Publicado: (2018) -
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property
por: Han, Siyu, et al.
Publicado: (2018)