Cargando…
Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus
The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414699/ https://www.ncbi.nlm.nih.gov/pubmed/30862747 http://dx.doi.org/10.1128/mBio.02175-18 |
_version_ | 1783403027349110784 |
---|---|
author | Passalacqua, Karla D. Lu, Jia Goodfellow, Ian Kolawole, Abimbola O. Arche, Jacob R. Maddox, Robert J. Carnahan, Kelly E. O’Riordan, Mary X. D. Wobus, Christiane E. |
author_facet | Passalacqua, Karla D. Lu, Jia Goodfellow, Ian Kolawole, Abimbola O. Arche, Jacob R. Maddox, Robert J. Carnahan, Kelly E. O’Riordan, Mary X. D. Wobus, Christiane E. |
author_sort | Passalacqua, Karla D. |
collection | PubMed |
description | The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems. |
format | Online Article Text |
id | pubmed-6414699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-64146992019-03-22 Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus Passalacqua, Karla D. Lu, Jia Goodfellow, Ian Kolawole, Abimbola O. Arche, Jacob R. Maddox, Robert J. Carnahan, Kelly E. O’Riordan, Mary X. D. Wobus, Christiane E. mBio Research Article The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems. American Society for Microbiology 2019-03-12 /pmc/articles/PMC6414699/ /pubmed/30862747 http://dx.doi.org/10.1128/mBio.02175-18 Text en Copyright © 2019 Passalacqua et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Passalacqua, Karla D. Lu, Jia Goodfellow, Ian Kolawole, Abimbola O. Arche, Jacob R. Maddox, Robert J. Carnahan, Kelly E. O’Riordan, Mary X. D. Wobus, Christiane E. Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus |
title | Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus |
title_full | Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus |
title_fullStr | Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus |
title_full_unstemmed | Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus |
title_short | Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus |
title_sort | glycolysis is an intrinsic factor for optimal replication of a norovirus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414699/ https://www.ncbi.nlm.nih.gov/pubmed/30862747 http://dx.doi.org/10.1128/mBio.02175-18 |
work_keys_str_mv | AT passalacquakarlad glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT lujia glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT goodfellowian glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT kolawoleabimbolao glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT archejacobr glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT maddoxrobertj glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT carnahankellye glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT oriordanmaryxd glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus AT wobuschristianee glycolysisisanintrinsicfactorforoptimalreplicationofanorovirus |