Cargando…

Correlation between Solubility Parameters and Properties of Alkali Lignin/PVA Composites

Although lignin blending with thermoplastic polymers has been widely studied, the usefulness of the lignin–polymer composites is limited by the poor compatibility of the two components. In the present study, alkali lignin/PVA composite membranes were prepared by incorporating 10%, 15%, 20% and 25% a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Gaofeng, Ni, Haiyue, Ren, Shixue, Fang, Guizhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414833/
https://www.ncbi.nlm.nih.gov/pubmed/30966325
http://dx.doi.org/10.3390/polym10030290
Descripción
Sumario:Although lignin blending with thermoplastic polymers has been widely studied, the usefulness of the lignin–polymer composites is limited by the poor compatibility of the two components. In the present study, alkali lignin/PVA composite membranes were prepared by incorporating 10%, 15%, 20% and 25% alkali lignin into the composites. The thermodynamic parameters of the composites were measured using inverse gas chromatography (IGC). Composite membranes with 10%, 15%, 20%, and 25% alkali lignin had solubility parameters of 17.51, 18.70, 16.64 and 16.38 (J/cm(3))(0.5), respectively, indicating that the solubility parameter firstly increased, and then decreased, with increasing proportions of alkali lignin. When the alkali lignin content was 15%, the composites had the largest solubility parameters. The composite membrane with an alkali lignin content of 15% had a tensile strength of 18.86 MPa and a hydrophilic contact angle of 89°. We have shown that the solubility parameters of blends were related to mechanical and hydrophilic properties of the composites and the relationships have been verified experimentally and theoretically.