Cargando…

Effect of Hydroxyl Monomers on the Enzymatic Degradation of Poly(ethylene succinate), Poly(butylene succinate), and Poly(hexylene succinate)

Poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), and poly(hexylene succinate) (PHS), were synthesized using succinic acid and different dihydric alcohols as materials. Enzymatic degradability by cutinase of the three kinds of polyesters was studied, as well as their solid-state proper...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Zhenhui, Liu, Yun, Su, Tingting, Wang, Zhanyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414858/
https://www.ncbi.nlm.nih.gov/pubmed/30966127
http://dx.doi.org/10.3390/polym10010090
Descripción
Sumario:Poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), and poly(hexylene succinate) (PHS), were synthesized using succinic acid and different dihydric alcohols as materials. Enzymatic degradability by cutinase of the three kinds of polyesters was studied, as well as their solid-state properties. The biodegradation behavior relied heavily on the distance between ester groups, crystallinity, and the hydrophilicity-hydrophobicity balance of polyester surfaces. The weight loss through degradation of the three kinds of polyesters with different hydroxyl monomers took place in the order PHS > PBS > PES. The degradation behavior of the polyesters before and after degradation was analyzed by scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The decrease in relative intensity at 1800–1650 estedpolyesters were degraded simultaneously. The frequencies of the crystalline and amorphous bands were almost identical before and after degradation. Thus, enzymatic degradation did not change the crystalline structure but destroyed it, and the degree of crystallinity markedly decreased. The molecular weight and polydispersity index only changed slightly. The thermal stability of the three kinds of polyesters decreased during enzymatic degradation.