Cargando…
Collagen-Coated Poly(lactide-co-glycolide)/Hydroxyapatite Scaffold Incorporated with DGEA Peptide for Synergistic Repair of Skull Defect
The treatment of large-area bone defects remains a challenge; however, various strategies have been developed to improve the performances of scaffolds in bone tissue engineering. In this study, poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HA) scaffold was coated with Asp-Gly-Glu-Ala (DGEA)-incorp...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414902/ https://www.ncbi.nlm.nih.gov/pubmed/30966145 http://dx.doi.org/10.3390/polym10020109 |
Sumario: | The treatment of large-area bone defects remains a challenge; however, various strategies have been developed to improve the performances of scaffolds in bone tissue engineering. In this study, poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HA) scaffold was coated with Asp-Gly-Glu-Ala (DGEA)-incorporated collagen for the repair of rat skull defect. Our results indicated that the mechanical strength and hydrophilicity of the PLGA/HA scaffold were clearly improved and conducive to cell adhesion and proliferation. The collagen-coated scaffold with DGEA significantly promoted the repair of skull defect. These findings indicated that a combination of collagen coating and DGEA improved scaffold properties for bone regeneration, thereby providing a new potential strategy for scaffold design. |
---|