Cargando…

Amphiphilic Quantum Dots with Asymmetric, Mixed Polymer Brush Layers: From Single Core-Shell Nanoparticles to Salt-Induced Vesicle Formation

A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs) with cadmium sulfide quantum dot (QD) cores and surface layers of densely grafted (σ = ~1 chain/nm(2)) and asymmetric (f(PS) = 0.9) mixed polymer brushes that contain hydrophobic polystyrene (PS) and hydrophilic poly...

Descripción completa

Detalles Bibliográficos
Autores principales: Coleman, Brian R., Moffitt, Matthew G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414905/
https://www.ncbi.nlm.nih.gov/pubmed/30966362
http://dx.doi.org/10.3390/polym10030327
Descripción
Sumario:A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs) with cadmium sulfide quantum dot (QD) cores and surface layers of densely grafted (σ = ~1 chain/nm(2)) and asymmetric (f(PS) = 0.9) mixed polymer brushes that contain hydrophobic polystyrene (PS) and hydrophilic poly(methyl methacrylate) (PMAA) chains (PS/PMAA-CdS). In aqueous media, the mixed brushes undergo conformational rearrangements that depend strongly on prior salt addition, giving rise to one of two pathways to fluorescent and morphologically disparate QD-polymer colloids. (A) In the absence of salt, centrosymmetric condensation of PS chains forms individual core-shell QD-polymer colloids. (B) In the presence of salt, non-centrosymmetric condensation of PS chains forms Janus particles, which trigger anisotropic interactions and amphiphilic self-assembly into the QD-polymer vesicles. To our knowledge, this is the first example of an ABNP building block that can form either discrete core-shell colloids or self-assembled superstructures in water depending on simple changes to the chemical conditions (i.e., salt addition). Such dramatic and finely tuned morphological variation could inform numerous applications in sensing, biolabeling, photonics, and nanomedicine.