Cargando…
Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC
This paper presents the interfacial optimisation of wood plastic composites (WPC) based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were inves...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414935/ https://www.ncbi.nlm.nih.gov/pubmed/30966301 http://dx.doi.org/10.3390/polym10030266 |
_version_ | 1783403074967044096 |
---|---|
author | Rao, Jiuping Zhou, Yonghui Fan, Mizi |
author_facet | Rao, Jiuping Zhou, Yonghui Fan, Mizi |
author_sort | Rao, Jiuping |
collection | PubMed |
description | This paper presents the interfacial optimisation of wood plastic composites (WPC) based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and Solid state (13)C Nuclear Magnetic Resonance spectroscopy (NMR) analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM) and Scanning Electron Microscope (SEM) analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms. |
format | Online Article Text |
id | pubmed-6414935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64149352019-04-02 Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC Rao, Jiuping Zhou, Yonghui Fan, Mizi Polymers (Basel) Article This paper presents the interfacial optimisation of wood plastic composites (WPC) based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and Solid state (13)C Nuclear Magnetic Resonance spectroscopy (NMR) analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM) and Scanning Electron Microscope (SEM) analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms. MDPI 2018-03-05 /pmc/articles/PMC6414935/ /pubmed/30966301 http://dx.doi.org/10.3390/polym10030266 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rao, Jiuping Zhou, Yonghui Fan, Mizi Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC |
title | Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC |
title_full | Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC |
title_fullStr | Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC |
title_full_unstemmed | Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC |
title_short | Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC |
title_sort | revealing the interface structure and bonding mechanism of coupling agent treated wpc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414935/ https://www.ncbi.nlm.nih.gov/pubmed/30966301 http://dx.doi.org/10.3390/polym10030266 |
work_keys_str_mv | AT raojiuping revealingtheinterfacestructureandbondingmechanismofcouplingagenttreatedwpc AT zhouyonghui revealingtheinterfacestructureandbondingmechanismofcouplingagenttreatedwpc AT fanmizi revealingtheinterfacestructureandbondingmechanismofcouplingagenttreatedwpc |