Cargando…
Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays
Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs). However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415000/ https://www.ncbi.nlm.nih.gov/pubmed/30966038 http://dx.doi.org/10.3390/polym10010004 |
_version_ | 1783403089974263808 |
---|---|
author | Zhong, Peng Ma, Xiaohua Xi, He |
author_facet | Zhong, Peng Ma, Xiaohua Xi, He |
author_sort | Zhong, Peng |
collection | PubMed |
description | Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs). However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of hybrid solar cells. In this work, a fullerene derivative named C60 pyrrolidine tris-acid is used to modify the interface of ZnO/poly(3-hexylthiophene) (P3HT). Results indicate that the C60 modification passivates the surface defects of ZnO and improves its intrinsic fluorescence. The quenching efficiency of P3HT photoluminescence is enhanced upon C60 functionalization, suggesting a more efficient charge transfer occurs across the modified P3HT/ZnO interface. Furthermore, the fullerene modified hybrid solar cell based on P3HT/ZnO NRAs displays substantially-enhanced performance as compared to the unmodified one and the devices with other modifiers, which is contributed to retarded recombination and enhanced exciton separation as evidenced by electrochemical impedance spectra. Therefore, fullerene passivation is a promising method to ameliorate the connection between conjugated polymers and metal oxides, and is applicable in diverse areas, such as solar cells, transistors, and light-emitting dioxides. |
format | Online Article Text |
id | pubmed-6415000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64150002019-04-02 Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays Zhong, Peng Ma, Xiaohua Xi, He Polymers (Basel) Article Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs). However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of hybrid solar cells. In this work, a fullerene derivative named C60 pyrrolidine tris-acid is used to modify the interface of ZnO/poly(3-hexylthiophene) (P3HT). Results indicate that the C60 modification passivates the surface defects of ZnO and improves its intrinsic fluorescence. The quenching efficiency of P3HT photoluminescence is enhanced upon C60 functionalization, suggesting a more efficient charge transfer occurs across the modified P3HT/ZnO interface. Furthermore, the fullerene modified hybrid solar cell based on P3HT/ZnO NRAs displays substantially-enhanced performance as compared to the unmodified one and the devices with other modifiers, which is contributed to retarded recombination and enhanced exciton separation as evidenced by electrochemical impedance spectra. Therefore, fullerene passivation is a promising method to ameliorate the connection between conjugated polymers and metal oxides, and is applicable in diverse areas, such as solar cells, transistors, and light-emitting dioxides. MDPI 2017-12-21 /pmc/articles/PMC6415000/ /pubmed/30966038 http://dx.doi.org/10.3390/polym10010004 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhong, Peng Ma, Xiaohua Xi, He Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays |
title | Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays |
title_full | Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays |
title_fullStr | Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays |
title_full_unstemmed | Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays |
title_short | Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays |
title_sort | passivating zno surface states by c60 pyrrolidine tris-acid for hybrid solar cells based on poly(3-hexylthiophene)/zno nanorod arrays |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415000/ https://www.ncbi.nlm.nih.gov/pubmed/30966038 http://dx.doi.org/10.3390/polym10010004 |
work_keys_str_mv | AT zhongpeng passivatingznosurfacestatesbyc60pyrrolidinetrisacidforhybridsolarcellsbasedonpoly3hexylthiopheneznonanorodarrays AT maxiaohua passivatingznosurfacestatesbyc60pyrrolidinetrisacidforhybridsolarcellsbasedonpoly3hexylthiopheneznonanorodarrays AT xihe passivatingznosurfacestatesbyc60pyrrolidinetrisacidforhybridsolarcellsbasedonpoly3hexylthiopheneznonanorodarrays |