Cargando…
Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics
Wood flour is particularly suitable as a filler in thermoplastics because it is environmentally friendly, readily available, and offers a high strength-to-density ratio. To overcome the insufficient interfacial adhesion between hydrophilic wood and a hydrophobic matrix, a thermoplastic polymer was g...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415022/ https://www.ncbi.nlm.nih.gov/pubmed/30966389 http://dx.doi.org/10.3390/polym10040354 |
_version_ | 1783403095099703296 |
---|---|
author | Kaßel, Martin Gerke, Julia Ley, Adrian Vana, Philipp |
author_facet | Kaßel, Martin Gerke, Julia Ley, Adrian Vana, Philipp |
author_sort | Kaßel, Martin |
collection | PubMed |
description | Wood flour is particularly suitable as a filler in thermoplastics because it is environmentally friendly, readily available, and offers a high strength-to-density ratio. To overcome the insufficient interfacial adhesion between hydrophilic wood and a hydrophobic matrix, a thermoplastic polymer was grafted from wood flour via surface-initiated activators regenerated by electron transfer-atom transfer radical polymerization (SI-ARGET ATRP). Wood particles were modified with an ATRP initiator and subsequently grafted with methyl acrylate for different polymerization times in the absence of a sacrificial initiator. The successful grafting of poly(methyl acrylate) (PMA) was demonstrated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. To confirm the control over the polymerization, a cleavable ATRP initiator was immobilized on the particles, allowing the detachment of the grafted polymer under mild conditions. The grafted particles were incorporated into a PMA matrix using solvent casting and their influence on the mechanical properties (Young’s modulus, yield strength, and toughness) of the composite was investigated. Tensile testing showed that the mechanical properties improved with increasing polymerization time and increasing ratio of incorporated grafted particles. |
format | Online Article Text |
id | pubmed-6415022 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64150222019-04-02 Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics Kaßel, Martin Gerke, Julia Ley, Adrian Vana, Philipp Polymers (Basel) Article Wood flour is particularly suitable as a filler in thermoplastics because it is environmentally friendly, readily available, and offers a high strength-to-density ratio. To overcome the insufficient interfacial adhesion between hydrophilic wood and a hydrophobic matrix, a thermoplastic polymer was grafted from wood flour via surface-initiated activators regenerated by electron transfer-atom transfer radical polymerization (SI-ARGET ATRP). Wood particles were modified with an ATRP initiator and subsequently grafted with methyl acrylate for different polymerization times in the absence of a sacrificial initiator. The successful grafting of poly(methyl acrylate) (PMA) was demonstrated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. To confirm the control over the polymerization, a cleavable ATRP initiator was immobilized on the particles, allowing the detachment of the grafted polymer under mild conditions. The grafted particles were incorporated into a PMA matrix using solvent casting and their influence on the mechanical properties (Young’s modulus, yield strength, and toughness) of the composite was investigated. Tensile testing showed that the mechanical properties improved with increasing polymerization time and increasing ratio of incorporated grafted particles. MDPI 2018-03-22 /pmc/articles/PMC6415022/ /pubmed/30966389 http://dx.doi.org/10.3390/polym10040354 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kaßel, Martin Gerke, Julia Ley, Adrian Vana, Philipp Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics |
title | Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics |
title_full | Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics |
title_fullStr | Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics |
title_full_unstemmed | Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics |
title_short | Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics |
title_sort | surface modification of wood flour via arget atrp and its application as filler in thermoplastics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415022/ https://www.ncbi.nlm.nih.gov/pubmed/30966389 http://dx.doi.org/10.3390/polym10040354 |
work_keys_str_mv | AT kaßelmartin surfacemodificationofwoodflourviaargetatrpanditsapplicationasfillerinthermoplastics AT gerkejulia surfacemodificationofwoodflourviaargetatrpanditsapplicationasfillerinthermoplastics AT leyadrian surfacemodificationofwoodflourviaargetatrpanditsapplicationasfillerinthermoplastics AT vanaphilipp surfacemodificationofwoodflourviaargetatrpanditsapplicationasfillerinthermoplastics |