Cargando…

Multi-Responsive Behaviors of Copolymers Bearing N-Isopropylacrylamide with or without Phenylboronic Acid in Aqueous Solution

Continuing efforts to develop novel smart materials are anticipated to upgrade the quality of life of humans. Thermo-responsive poly(N-isopropylacrylamide) and glucose-responsive phenylboronic acid—typical representatives—are often integrated as multi-stimuli-sensitive materials, but few are availab...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiaxing, Yang, Lei, Fan, Xiaoguang, Wang, Fei, Zhang, Jing, Wang, Zhanyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415023/
https://www.ncbi.nlm.nih.gov/pubmed/30966328
http://dx.doi.org/10.3390/polym10030293
Descripción
Sumario:Continuing efforts to develop novel smart materials are anticipated to upgrade the quality of life of humans. Thermo-responsive poly(N-isopropylacrylamide) and glucose-responsive phenylboronic acid—typical representatives—are often integrated as multi-stimuli-sensitive materials, but few are available for side-by-side comparisons with their properties. In this study, both copolymers bearing N-isopropylacrylamide (NIPAAm), with or without 3-acrylamidophenylboronic acid (AAPBA), were synthesized by free radical polymerization, and characterized by Fourier transform infrared spectrometry, nuclear magnetic resonance hydrogen spectroscopy and gel permeation chromatography. Dynamic light scattering was used to analyze and compare the responsive behaviors of the copolymers in different aqueous solutions. Atomic force microscopy was also employed to investigate the apparent morphology changes with particle sizes. The results demonstrated that the introduction of NIPAAm endowed the composite materials with thermosensitivity, whereas the addition of AAPBA lowered the molecular weight of the copolymers, intensified the intermolecular aggregation of the nanoparticles, reduced the lower critical solution temperature (LCST) of the composites, and accordingly allowed the copolymers to respond to glucose. It was also concluded that the responding of smart copolymers to operating parameters can be activated only under special conditions, and copolymer dimension and conformation were affected by inter/intramolecular interactions.