Cargando…
Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets
In this study, we demonstrate an effective approach based on a simple processing method to improve the thermomechanical properties of graphene polymer composites (GPCs). Edge-selectively functionalized graphene (EFG) was successfully obtained through simple ball milling of natural graphite in the pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415149/ https://www.ncbi.nlm.nih.gov/pubmed/30966064 http://dx.doi.org/10.3390/polym10010029 |
_version_ | 1783403123860045824 |
---|---|
author | Nam, Ki-Ho Cho, Jaehyun Yeo, Hyeonuk |
author_facet | Nam, Ki-Ho Cho, Jaehyun Yeo, Hyeonuk |
author_sort | Nam, Ki-Ho |
collection | PubMed |
description | In this study, we demonstrate an effective approach based on a simple processing method to improve the thermomechanical properties of graphene polymer composites (GPCs). Edge-selectively functionalized graphene (EFG) was successfully obtained through simple ball milling of natural graphite in the presence of dry ice, which acted as the source of carboxyl functional groups that were attached to the peripheral basal plane of graphene. The resultant EFG is highly dispersible in various organic solvents and contributes to improving their physical properties because of its unique characteristics. Pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) were used as monomers for constructing the polyimide (PI) backbone, after which PI/EFG composites were prepared by in situ polymerization. A stepwise thermal imidization method was used to prepare the PI films for comparison purposes. The PI/EFG composite films were found to exhibit reinforced thermal and thermo-mechanical properties compared to neat PI owing to the interaction between the EFG and PI matrix. |
format | Online Article Text |
id | pubmed-6415149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64151492019-04-02 Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets Nam, Ki-Ho Cho, Jaehyun Yeo, Hyeonuk Polymers (Basel) Article In this study, we demonstrate an effective approach based on a simple processing method to improve the thermomechanical properties of graphene polymer composites (GPCs). Edge-selectively functionalized graphene (EFG) was successfully obtained through simple ball milling of natural graphite in the presence of dry ice, which acted as the source of carboxyl functional groups that were attached to the peripheral basal plane of graphene. The resultant EFG is highly dispersible in various organic solvents and contributes to improving their physical properties because of its unique characteristics. Pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) were used as monomers for constructing the polyimide (PI) backbone, after which PI/EFG composites were prepared by in situ polymerization. A stepwise thermal imidization method was used to prepare the PI films for comparison purposes. The PI/EFG composite films were found to exhibit reinforced thermal and thermo-mechanical properties compared to neat PI owing to the interaction between the EFG and PI matrix. MDPI 2017-12-26 /pmc/articles/PMC6415149/ /pubmed/30966064 http://dx.doi.org/10.3390/polym10010029 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nam, Ki-Ho Cho, Jaehyun Yeo, Hyeonuk Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets |
title | Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets |
title_full | Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets |
title_fullStr | Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets |
title_full_unstemmed | Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets |
title_short | Thermomechanical Behavior of Polymer Composites Based on Edge-Selectively Functionalized Graphene Nanosheets |
title_sort | thermomechanical behavior of polymer composites based on edge-selectively functionalized graphene nanosheets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415149/ https://www.ncbi.nlm.nih.gov/pubmed/30966064 http://dx.doi.org/10.3390/polym10010029 |
work_keys_str_mv | AT namkiho thermomechanicalbehaviorofpolymercompositesbasedonedgeselectivelyfunctionalizedgraphenenanosheets AT chojaehyun thermomechanicalbehaviorofpolymercompositesbasedonedgeselectivelyfunctionalizedgraphenenanosheets AT yeohyeonuk thermomechanicalbehaviorofpolymercompositesbasedonedgeselectivelyfunctionalizedgraphenenanosheets |