Cargando…
False signals induced by single-cell imputation
Background: Single-cell RNA-seq is a powerful tool for measuring gene expression at the resolution of individual cells. A challenge in the analysis of this data is the large amount of zero values, representing either missing data or no expression. Several imputation approaches have been proposed to...
Autores principales: | Andrews, Tallulah S., Hemberg, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415334/ https://www.ncbi.nlm.nih.gov/pubmed/30906525 http://dx.doi.org/10.12688/f1000research.16613.2 |
Ejemplares similares
-
M3Drop: dropout-based feature selection for scRNASeq
por: Andrews, Tallulah S, et al.
Publicado: (2019) -
SC3 - consensus clustering of single-cell RNA-Seq data
por: Kiselev, Vladimir Yu., et al.
Publicado: (2017) -
Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
por: Raevskiy, Mikhail, et al.
Publicado: (2023) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
DrImpute: imputing dropout events in single cell RNA sequencing data
por: Gong, Wuming, et al.
Publicado: (2018)