Cargando…

Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method

In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across...

Descripción completa

Detalles Bibliográficos
Autores principales: Bleda, Sergio, Francés, Jorge, Gallego, Sergi, Márquez, Andrés, Neipp, Cristian, Pascual, Inmaculada, Beléndez, Augusto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415371/
https://www.ncbi.nlm.nih.gov/pubmed/30966499
http://dx.doi.org/10.3390/polym10050465
_version_ 1783403172240293888
author Bleda, Sergio
Francés, Jorge
Gallego, Sergi
Márquez, Andrés
Neipp, Cristian
Pascual, Inmaculada
Beléndez, Augusto
author_facet Bleda, Sergio
Francés, Jorge
Gallego, Sergi
Márquez, Andrés
Neipp, Cristian
Pascual, Inmaculada
Beléndez, Augusto
author_sort Bleda, Sergio
collection PubMed
description In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across the H-PLDC layer and also the non-homogeneous orientation of the LC director within the droplet. The direction of the LC director inside the droplets can be varied to reproduce the effects of the external voltage applied in H-PDLC-based gratings. From the LC director distribution in the droplet, the permittivity tensor is defined, which establishes the optical anisotropy of the media, and it is used for numerically solving the light propagation through the system. In this work, the split-field finite-difference time-domain method (SF-FDTD) is applied. This method is suited for accurately analyzing periodic media, and it considers spatial and time discretisation of Maxwell’s equations. The scheme proposed here is used to investigate the influence on the diffraction properties of H-PDLC as a function of the droplets size and the bulk fraction of LC dispersed material.
format Online
Article
Text
id pubmed-6415371
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64153712019-04-02 Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method Bleda, Sergio Francés, Jorge Gallego, Sergi Márquez, Andrés Neipp, Cristian Pascual, Inmaculada Beléndez, Augusto Polymers (Basel) Article In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across the H-PLDC layer and also the non-homogeneous orientation of the LC director within the droplet. The direction of the LC director inside the droplets can be varied to reproduce the effects of the external voltage applied in H-PDLC-based gratings. From the LC director distribution in the droplet, the permittivity tensor is defined, which establishes the optical anisotropy of the media, and it is used for numerically solving the light propagation through the system. In this work, the split-field finite-difference time-domain method (SF-FDTD) is applied. This method is suited for accurately analyzing periodic media, and it considers spatial and time discretisation of Maxwell’s equations. The scheme proposed here is used to investigate the influence on the diffraction properties of H-PDLC as a function of the droplets size and the bulk fraction of LC dispersed material. MDPI 2018-04-24 /pmc/articles/PMC6415371/ /pubmed/30966499 http://dx.doi.org/10.3390/polym10050465 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bleda, Sergio
Francés, Jorge
Gallego, Sergi
Márquez, Andrés
Neipp, Cristian
Pascual, Inmaculada
Beléndez, Augusto
Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_full Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_fullStr Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_full_unstemmed Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_short Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
title_sort numerical analysis of h-pdlc using the split-field finite-difference time-domain method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415371/
https://www.ncbi.nlm.nih.gov/pubmed/30966499
http://dx.doi.org/10.3390/polym10050465
work_keys_str_mv AT bledasergio numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT francesjorge numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT gallegosergi numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT marquezandres numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT neippcristian numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT pascualinmaculada numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod
AT belendezaugusto numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod