Cargando…
Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method
In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415371/ https://www.ncbi.nlm.nih.gov/pubmed/30966499 http://dx.doi.org/10.3390/polym10050465 |
_version_ | 1783403172240293888 |
---|---|
author | Bleda, Sergio Francés, Jorge Gallego, Sergi Márquez, Andrés Neipp, Cristian Pascual, Inmaculada Beléndez, Augusto |
author_facet | Bleda, Sergio Francés, Jorge Gallego, Sergi Márquez, Andrés Neipp, Cristian Pascual, Inmaculada Beléndez, Augusto |
author_sort | Bleda, Sergio |
collection | PubMed |
description | In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across the H-PLDC layer and also the non-homogeneous orientation of the LC director within the droplet. The direction of the LC director inside the droplets can be varied to reproduce the effects of the external voltage applied in H-PDLC-based gratings. From the LC director distribution in the droplet, the permittivity tensor is defined, which establishes the optical anisotropy of the media, and it is used for numerically solving the light propagation through the system. In this work, the split-field finite-difference time-domain method (SF-FDTD) is applied. This method is suited for accurately analyzing periodic media, and it considers spatial and time discretisation of Maxwell’s equations. The scheme proposed here is used to investigate the influence on the diffraction properties of H-PDLC as a function of the droplets size and the bulk fraction of LC dispersed material. |
format | Online Article Text |
id | pubmed-6415371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64153712019-04-02 Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method Bleda, Sergio Francés, Jorge Gallego, Sergi Márquez, Andrés Neipp, Cristian Pascual, Inmaculada Beléndez, Augusto Polymers (Basel) Article In this work, an accurate numerical modeling of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) gratings is presented. The method considers ellipsoid geometry-based liquid crystal (LC) droplets with random properties regarding size and location across the H-PLDC layer and also the non-homogeneous orientation of the LC director within the droplet. The direction of the LC director inside the droplets can be varied to reproduce the effects of the external voltage applied in H-PDLC-based gratings. From the LC director distribution in the droplet, the permittivity tensor is defined, which establishes the optical anisotropy of the media, and it is used for numerically solving the light propagation through the system. In this work, the split-field finite-difference time-domain method (SF-FDTD) is applied. This method is suited for accurately analyzing periodic media, and it considers spatial and time discretisation of Maxwell’s equations. The scheme proposed here is used to investigate the influence on the diffraction properties of H-PDLC as a function of the droplets size and the bulk fraction of LC dispersed material. MDPI 2018-04-24 /pmc/articles/PMC6415371/ /pubmed/30966499 http://dx.doi.org/10.3390/polym10050465 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bleda, Sergio Francés, Jorge Gallego, Sergi Márquez, Andrés Neipp, Cristian Pascual, Inmaculada Beléndez, Augusto Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method |
title | Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method |
title_full | Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method |
title_fullStr | Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method |
title_full_unstemmed | Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method |
title_short | Numerical Analysis of H-PDLC Using the Split-Field Finite-Difference Time-Domain Method |
title_sort | numerical analysis of h-pdlc using the split-field finite-difference time-domain method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415371/ https://www.ncbi.nlm.nih.gov/pubmed/30966499 http://dx.doi.org/10.3390/polym10050465 |
work_keys_str_mv | AT bledasergio numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod AT francesjorge numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod AT gallegosergi numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod AT marquezandres numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod AT neippcristian numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod AT pascualinmaculada numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod AT belendezaugusto numericalanalysisofhpdlcusingthesplitfieldfinitedifferencetimedomainmethod |