Cargando…
Controlled Preparation of Thermally Stable Fe-Poly(dimethylsiloxane) Composite by Magnetic Induction Heating
The most challenging task in the preparation of poly(dimethylsiloxane) composites is to control the curing time as well as to enhance their thermal and swelling behavior. Curing rate can be modified and controlled by a range of iron powder contents to achieve a desired working time, where iron is us...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415383/ https://www.ncbi.nlm.nih.gov/pubmed/30966541 http://dx.doi.org/10.3390/polym10050507 |
Sumario: | The most challenging task in the preparation of poly(dimethylsiloxane) composites is to control the curing time as well as to enhance their thermal and swelling behavior. Curing rate can be modified and controlled by a range of iron powder contents to achieve a desired working time, where iron is used as self-heating particles. Iron under alternative current magnetic field (ACMF) is able to generate thermal energy, providing a benefit in accelerating the curing of composites. Three types of iron-Poly(dimethylsiloxane) (Fe-PDMS) composites were prepared under ACMF with iron content 5, 10, and 15 wt %. The curing process was investigated by FTIR, while the morphology and the thermal stability were examined by SEM, DMA, and TGA. The heating’s profile was studied as functions of iron content and induction time. It was found that the time required to complete curing was reduced and the curing temperature was controlled by varying the iron content and induction time. In addition, the thermal stability and the swelling behavior of the prepared composites were enhanced in comparison with the conventional PDMS and thus offer a promising route to obtain thermally stable composites. |
---|