Cargando…
Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling
Gaskets are compressed in proton exchange membrane fuel cells (PEMFCs) to keep fuel, oxidant and coolant within their respective regions and are very important for sealing and maintaining electrochemical performance of fuel cells during their long-term operation. It has been proved that the gas leak...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415415/ https://www.ncbi.nlm.nih.gov/pubmed/30966556 http://dx.doi.org/10.3390/polym10050522 |
_version_ | 1783403182415675392 |
---|---|
author | Wu, Fan Chen, Ben Yan, Yizhi Chen, Yanan Pan, Mu |
author_facet | Wu, Fan Chen, Ben Yan, Yizhi Chen, Yanan Pan, Mu |
author_sort | Wu, Fan |
collection | PubMed |
description | Gaskets are compressed in proton exchange membrane fuel cells (PEMFCs) to keep fuel, oxidant and coolant within their respective regions and are very important for sealing and maintaining electrochemical performance of fuel cells during their long-term operation. It has been proved that the gas leakage caused by the failure of the gaskets following long-term operation is one of the main reasons for PEMFC performance degradation. In this work, degradation of silicone rubbers, the potential gasket materials for PEMFCs, were investigated in the simulated PEMFC environment solution, weak acid solution, de-ionized water and air, respectively, under alternating temperature cycling from −20 °C to 90 °C. The changes in hardness, weight, chemical properties, mechanical behavior and surface morphology of the samples of silicone rubbers were studied after a certain number of temperature cycles. The results show that with the increase in temperature cycles, the hardness of the samples increases and the weight of the samples decreases gradually. Scanning electron microscopy reveals that cracks and caves constantly appear on the surface of the samples. Attenuated total reflection Fourier transform infrared spectra (ATR-FTIR) results demonstrate that the surface chemistry changes via de-crosslinking and chain scission in the backbone due to the exposure of samples to the environments over time under alternating temperature cycles. |
format | Online Article Text |
id | pubmed-6415415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64154152019-04-02 Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling Wu, Fan Chen, Ben Yan, Yizhi Chen, Yanan Pan, Mu Polymers (Basel) Article Gaskets are compressed in proton exchange membrane fuel cells (PEMFCs) to keep fuel, oxidant and coolant within their respective regions and are very important for sealing and maintaining electrochemical performance of fuel cells during their long-term operation. It has been proved that the gas leakage caused by the failure of the gaskets following long-term operation is one of the main reasons for PEMFC performance degradation. In this work, degradation of silicone rubbers, the potential gasket materials for PEMFCs, were investigated in the simulated PEMFC environment solution, weak acid solution, de-ionized water and air, respectively, under alternating temperature cycling from −20 °C to 90 °C. The changes in hardness, weight, chemical properties, mechanical behavior and surface morphology of the samples of silicone rubbers were studied after a certain number of temperature cycles. The results show that with the increase in temperature cycles, the hardness of the samples increases and the weight of the samples decreases gradually. Scanning electron microscopy reveals that cracks and caves constantly appear on the surface of the samples. Attenuated total reflection Fourier transform infrared spectra (ATR-FTIR) results demonstrate that the surface chemistry changes via de-crosslinking and chain scission in the backbone due to the exposure of samples to the environments over time under alternating temperature cycles. MDPI 2018-05-13 /pmc/articles/PMC6415415/ /pubmed/30966556 http://dx.doi.org/10.3390/polym10050522 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Fan Chen, Ben Yan, Yizhi Chen, Yanan Pan, Mu Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling |
title | Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling |
title_full | Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling |
title_fullStr | Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling |
title_full_unstemmed | Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling |
title_short | Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling |
title_sort | degradation of silicone rubbers as sealing materials for proton exchange membrane fuel cells under temperature cycling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415415/ https://www.ncbi.nlm.nih.gov/pubmed/30966556 http://dx.doi.org/10.3390/polym10050522 |
work_keys_str_mv | AT wufan degradationofsiliconerubbersassealingmaterialsforprotonexchangemembranefuelcellsundertemperaturecycling AT chenben degradationofsiliconerubbersassealingmaterialsforprotonexchangemembranefuelcellsundertemperaturecycling AT yanyizhi degradationofsiliconerubbersassealingmaterialsforprotonexchangemembranefuelcellsundertemperaturecycling AT chenyanan degradationofsiliconerubbersassealingmaterialsforprotonexchangemembranefuelcellsundertemperaturecycling AT panmu degradationofsiliconerubbersassealingmaterialsforprotonexchangemembranefuelcellsundertemperaturecycling |