Cargando…

Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization

Decreasing the surface energy of polyacrylate-based materials is important especially in embossed holography, but current solutions typically involve high-cost synthesis or encounter compatibility problems. Herein, we utilize the grafting of polytetrafluoroethylene (PTFE) micropowder with poly (meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hui, Wen, Yingfeng, Peng, Haiyan, Zheng, Chengfu, Li, Yuesheng, Wang, Sheng, Sun, Shaofa, Xie, Xiaolin, Zhou, Xingping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415420/
https://www.ncbi.nlm.nih.gov/pubmed/30966537
http://dx.doi.org/10.3390/polym10050503
_version_ 1783403183564914688
author Wang, Hui
Wen, Yingfeng
Peng, Haiyan
Zheng, Chengfu
Li, Yuesheng
Wang, Sheng
Sun, Shaofa
Xie, Xiaolin
Zhou, Xingping
author_facet Wang, Hui
Wen, Yingfeng
Peng, Haiyan
Zheng, Chengfu
Li, Yuesheng
Wang, Sheng
Sun, Shaofa
Xie, Xiaolin
Zhou, Xingping
author_sort Wang, Hui
collection PubMed
description Decreasing the surface energy of polyacrylate-based materials is important especially in embossed holography, but current solutions typically involve high-cost synthesis or encounter compatibility problems. Herein, we utilize the grafting of polytetrafluoroethylene (PTFE) micropowder with poly (methyl methacrylate) (PMMA). The grafting reaction is implemented via in situ electron beam irradiation-induced polymerization in the presence of fluorinated surfactants, generating PMMA grafted PTFE micropowder (PMMA–g–PTFE). The optimal degree of grafting (DG) is 17.8%. With the incorporation of PMMA–g–PTFE, the interfacial interaction between polyacrylate and PTFE is greatly improved, giving rise to uniform polyacrylate/PMMA–g–PTFE composites with a low surface energy. For instance, the loading content of PMMA–g–PTFE in polyacrylate is up to 16 wt %, leading to an increase of more than 20 degrees in the water contact angle compared to the pristine sample. This research paves a way to generate new polyacrylate-based films for embossed holography.
format Online
Article
Text
id pubmed-6415420
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64154202019-04-02 Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization Wang, Hui Wen, Yingfeng Peng, Haiyan Zheng, Chengfu Li, Yuesheng Wang, Sheng Sun, Shaofa Xie, Xiaolin Zhou, Xingping Polymers (Basel) Article Decreasing the surface energy of polyacrylate-based materials is important especially in embossed holography, but current solutions typically involve high-cost synthesis or encounter compatibility problems. Herein, we utilize the grafting of polytetrafluoroethylene (PTFE) micropowder with poly (methyl methacrylate) (PMMA). The grafting reaction is implemented via in situ electron beam irradiation-induced polymerization in the presence of fluorinated surfactants, generating PMMA grafted PTFE micropowder (PMMA–g–PTFE). The optimal degree of grafting (DG) is 17.8%. With the incorporation of PMMA–g–PTFE, the interfacial interaction between polyacrylate and PTFE is greatly improved, giving rise to uniform polyacrylate/PMMA–g–PTFE composites with a low surface energy. For instance, the loading content of PMMA–g–PTFE in polyacrylate is up to 16 wt %, leading to an increase of more than 20 degrees in the water contact angle compared to the pristine sample. This research paves a way to generate new polyacrylate-based films for embossed holography. MDPI 2018-05-06 /pmc/articles/PMC6415420/ /pubmed/30966537 http://dx.doi.org/10.3390/polym10050503 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Hui
Wen, Yingfeng
Peng, Haiyan
Zheng, Chengfu
Li, Yuesheng
Wang, Sheng
Sun, Shaofa
Xie, Xiaolin
Zhou, Xingping
Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
title Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
title_full Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
title_fullStr Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
title_full_unstemmed Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
title_short Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
title_sort grafting polytetrafluoroethylene micropowder via in situ electron beam irradiation-induced polymerization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415420/
https://www.ncbi.nlm.nih.gov/pubmed/30966537
http://dx.doi.org/10.3390/polym10050503
work_keys_str_mv AT wanghui graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT wenyingfeng graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT penghaiyan graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT zhengchengfu graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT liyuesheng graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT wangsheng graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT sunshaofa graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT xiexiaolin graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization
AT zhouxingping graftingpolytetrafluoroethylenemicropowderviainsituelectronbeamirradiationinducedpolymerization