Cargando…
Classification of Melanocytic Lesions in Selected and Whole-Slide Images via Convolutional Neural Networks
Whole-slide images (WSIs) are a rich new source of biomedical imaging data. The use of automated systems to classify and segment WSIs has recently come to forefront of the pathology research community. While digital slides have obvious educational and clinical uses, their most exciting potential lie...
Autores principales: | Hart, Steven N., Flotte, William, Norgan, Andrew P., Shah, Kabeer K., Buchan, Zachary R., Mounajjed, Taofic, Flotte, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415523/ https://www.ncbi.nlm.nih.gov/pubmed/30972224 http://dx.doi.org/10.4103/jpi.jpi_32_18 |
Ejemplares similares
-
Using an anomaly detection approach for the segmentation of colorectal cancer tumors in whole slide images
por: Gu, Qiangqiang, et al.
Publicado: (2023) -
Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration
por: Jiang, Jun, et al.
Publicado: (2019) -
Dicom_wsi: A Python Implementation for Converting Whole-Slide Images to Digital Imaging and Communications in Medicine Compliant Files
por: Gu, Qiangqiang, et al.
Publicado: (2021) -
Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images
por: Ba, Wei, et al.
Publicado: (2021) -
Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2020)