Cargando…

The entropic force generated by intrinsically disordered segments tunes protein function

Protein structures are dynamic and can explore a large conformational landscape(1,2). Only some of these structural substates are important for protein function (i.e. ligand binding, catalysis and regulation)(3–5). How evolution shapes the structural ensemble to optimize a specific function is poorl...

Descripción completa

Detalles Bibliográficos
Autores principales: Keul, Nicholas D., Oruganty, Krishnadev, Bergman, Elizabeth T. Schaper, Beattie, Nathaniel R., McDonald, Weston E., Kadirvelraj, Renuka, Gross, Michael L., Phillips, Robert S., Harvey, Stephen C., Wood, Zachary A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415545/
https://www.ncbi.nlm.nih.gov/pubmed/30420606
http://dx.doi.org/10.1038/s41586-018-0699-5
_version_ 1783403208321794048
author Keul, Nicholas D.
Oruganty, Krishnadev
Bergman, Elizabeth T. Schaper
Beattie, Nathaniel R.
McDonald, Weston E.
Kadirvelraj, Renuka
Gross, Michael L.
Phillips, Robert S.
Harvey, Stephen C.
Wood, Zachary A.
author_facet Keul, Nicholas D.
Oruganty, Krishnadev
Bergman, Elizabeth T. Schaper
Beattie, Nathaniel R.
McDonald, Weston E.
Kadirvelraj, Renuka
Gross, Michael L.
Phillips, Robert S.
Harvey, Stephen C.
Wood, Zachary A.
author_sort Keul, Nicholas D.
collection PubMed
description Protein structures are dynamic and can explore a large conformational landscape(1,2). Only some of these structural substates are important for protein function (i.e. ligand binding, catalysis and regulation)(3–5). How evolution shapes the structural ensemble to optimize a specific function is poorly understood>(3,4). One of the constraints on the evolution of proteins is the stability of the folded ‘native’ state. Despite this, 44% of the human proteome contains intrinsically disordered (ID) peptide segments >30 residues in length(6), the majority of which have no known function(7–9). Here we show that the entropic force produced by an ID carboxy-terminus (ID-tail) shifts the conformational ensemble of human UDP-α-D-glucose-6-dehydrogenase (hUGDH) toward a substate with a high affinity for an allosteric inhibitor. The function of the ID-tail does not depend on its sequence or chemical composition. Instead, the affinity enhancement can be accurately predicted based on the length of the ID segment and is consistent with the entropic force generated by an unstructured peptide attached to the protein surface(10–13). Our data show that the unfolded state of the ID-tail rectifies the dynamics and structure of hUGDH to favor inhibitor binding. Because this entropic rectifier does not have any sequence or structural constraints, it is an easily acquired adaptation. This model implies that evolution selects for disordered segments to tune the energy landscape of proteins, which may explain the persistence of ID in the proteome.
format Online
Article
Text
id pubmed-6415545
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-64155452019-05-12 The entropic force generated by intrinsically disordered segments tunes protein function Keul, Nicholas D. Oruganty, Krishnadev Bergman, Elizabeth T. Schaper Beattie, Nathaniel R. McDonald, Weston E. Kadirvelraj, Renuka Gross, Michael L. Phillips, Robert S. Harvey, Stephen C. Wood, Zachary A. Nature Article Protein structures are dynamic and can explore a large conformational landscape(1,2). Only some of these structural substates are important for protein function (i.e. ligand binding, catalysis and regulation)(3–5). How evolution shapes the structural ensemble to optimize a specific function is poorly understood>(3,4). One of the constraints on the evolution of proteins is the stability of the folded ‘native’ state. Despite this, 44% of the human proteome contains intrinsically disordered (ID) peptide segments >30 residues in length(6), the majority of which have no known function(7–9). Here we show that the entropic force produced by an ID carboxy-terminus (ID-tail) shifts the conformational ensemble of human UDP-α-D-glucose-6-dehydrogenase (hUGDH) toward a substate with a high affinity for an allosteric inhibitor. The function of the ID-tail does not depend on its sequence or chemical composition. Instead, the affinity enhancement can be accurately predicted based on the length of the ID segment and is consistent with the entropic force generated by an unstructured peptide attached to the protein surface(10–13). Our data show that the unfolded state of the ID-tail rectifies the dynamics and structure of hUGDH to favor inhibitor binding. Because this entropic rectifier does not have any sequence or structural constraints, it is an easily acquired adaptation. This model implies that evolution selects for disordered segments to tune the energy landscape of proteins, which may explain the persistence of ID in the proteome. 2018-11-12 2018-11 /pmc/articles/PMC6415545/ /pubmed/30420606 http://dx.doi.org/10.1038/s41586-018-0699-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Keul, Nicholas D.
Oruganty, Krishnadev
Bergman, Elizabeth T. Schaper
Beattie, Nathaniel R.
McDonald, Weston E.
Kadirvelraj, Renuka
Gross, Michael L.
Phillips, Robert S.
Harvey, Stephen C.
Wood, Zachary A.
The entropic force generated by intrinsically disordered segments tunes protein function
title The entropic force generated by intrinsically disordered segments tunes protein function
title_full The entropic force generated by intrinsically disordered segments tunes protein function
title_fullStr The entropic force generated by intrinsically disordered segments tunes protein function
title_full_unstemmed The entropic force generated by intrinsically disordered segments tunes protein function
title_short The entropic force generated by intrinsically disordered segments tunes protein function
title_sort entropic force generated by intrinsically disordered segments tunes protein function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415545/
https://www.ncbi.nlm.nih.gov/pubmed/30420606
http://dx.doi.org/10.1038/s41586-018-0699-5
work_keys_str_mv AT keulnicholasd theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT orugantykrishnadev theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT bergmanelizabethtschaper theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT beattienathanielr theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT mcdonaldwestone theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT kadirvelrajrenuka theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT grossmichaell theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT phillipsroberts theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT harveystephenc theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT woodzacharya theentropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT keulnicholasd entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT orugantykrishnadev entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT bergmanelizabethtschaper entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT beattienathanielr entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT mcdonaldwestone entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT kadirvelrajrenuka entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT grossmichaell entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT phillipsroberts entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT harveystephenc entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction
AT woodzacharya entropicforcegeneratedbyintrinsicallydisorderedsegmentstunesproteinfunction