Cargando…
Simultaneous coherent structure coloring facilitates interpretable clustering of scientific data by amplifying dissimilarity
The clustering of data into physically meaningful subsets often requires assumptions regarding the number, size, or shape of the subgroups. Here, we present a new method, simultaneous coherent structure coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance...
Autores principales: | Husic, Brooke E., Schlueter-Kuck, Kristy L., Dabiri, John O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415781/ https://www.ncbi.nlm.nih.gov/pubmed/30865644 http://dx.doi.org/10.1371/journal.pone.0212442 |
Ejemplares similares
-
Dissimilarity for functional data clustering based on smoothing parameter commutation
por: Tzeng, ShengLi, et al.
Publicado: (2017) -
Similarities and dissimilarities between psychiatric cluster disorders
por: Smail, Marissa A., et al.
Publicado: (2021) -
Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data
por: Nuñez, Jamie R., et al.
Publicado: (2018) -
Exploring protein structural dissimilarity to facilitate structure classification
por: Jain, Pooja, et al.
Publicado: (2009) -
A Comparison Study on Similarity and Dissimilarity Measures in Clustering Continuous Data
por: Shirkhorshidi, Ali Seyed, et al.
Publicado: (2015)