Cargando…
A constrained singular value decomposition method that integrates sparsity and orthogonality
We propose a new sparsification method for the singular value decomposition—called the constrained singular value decomposition (CSVD)—that can incorporate multiple constraints such as sparsification and orthogonality for the left and right singular vectors. The CSVD can combine different constraint...
Autores principales: | Guillemot, Vincent, Beaton, Derek, Gloaguen, Arnaud, Löfstedt, Tommy, Levine, Brian, Raymond, Nicolas, Tenenhaus, Arthur, Abdi, Hervé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415851/ https://www.ncbi.nlm.nih.gov/pubmed/30865639 http://dx.doi.org/10.1371/journal.pone.0211463 |
Ejemplares similares
-
Graph Constrained Discriminant Analysis: A New Method for the Integration of a Graph into a Classification Process
por: Guillemot, Vincent, et al.
Publicado: (2011) -
Neighbor-based adaptive sparsity orthogonal least square for fluorescence molecular tomography
por: Yi, Huangjian, et al.
Publicado: (2023) -
A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings
por: Wang, Huaqing, et al.
Publicado: (2016) -
Orthogonal Polynomials with Singularly Perturbed Freud Weights
por: Min, Chao, et al.
Publicado: (2023) -
Orthogonal decompositions and integral lattices
por: Kostrikin, Alexei I, et al.
Publicado: (2011)