Cargando…
A Differentiable Physics Engine for Deep Learning in Robotics
An important field in robotics is the optimization of controllers. Currently, robots are often treated as a black box in this optimization process, which is the reason why derivative-free optimization methods such as evolutionary algorithms or reinforcement learning are omnipresent. When gradient-ba...
Autores principales: | Degrave, Jonas, Hermans, Michiel, Dambre, Joni, wyffels, Francis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416213/ https://www.ncbi.nlm.nih.gov/pubmed/30899218 http://dx.doi.org/10.3389/fnbot.2019.00006 |
Ejemplares similares
-
Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs
por: Spröwitz, Alexander T., et al.
Publicado: (2018) -
Robotic Impedance Learning for Robot-Assisted Physical Training
por: Li, Yanan, et al.
Publicado: (2019) -
Recent trends in robot learning and evolution for swarm robotics
por: Kuckling, Jonas
Publicado: (2023) -
Using First Principles for Deep Learning and Model-Based Control of Soft Robots
por: Johnson, Curtis C., et al.
Publicado: (2021) -
Autonomous detection and sorting of litter using deep learning and soft robotic grippers
por: Almanzor, Elijah, et al.
Publicado: (2022)