Cargando…

The Redemption of Noise: Inference with Neural Populations

In 2006, Ma et al. presented an elegant theory for how populations of neurons might represent uncertainty to perform Bayesian inference. Critically, according to this theory, neural variability is no longer a nuisance, but rather a vital part of how the brain encodes probability distributions and pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Echeveste, Rodrigo, Lengyel, Máté
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Applied Science Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416224/
https://www.ncbi.nlm.nih.gov/pubmed/30366563
http://dx.doi.org/10.1016/j.tins.2018.09.003
_version_ 1783403310677491712
author Echeveste, Rodrigo
Lengyel, Máté
author_facet Echeveste, Rodrigo
Lengyel, Máté
author_sort Echeveste, Rodrigo
collection PubMed
description In 2006, Ma et al. presented an elegant theory for how populations of neurons might represent uncertainty to perform Bayesian inference. Critically, according to this theory, neural variability is no longer a nuisance, but rather a vital part of how the brain encodes probability distributions and performs computations with them.
format Online
Article
Text
id pubmed-6416224
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier Applied Science Publishing
record_format MEDLINE/PubMed
spelling pubmed-64162242019-03-25 The Redemption of Noise: Inference with Neural Populations Echeveste, Rodrigo Lengyel, Máté Trends Neurosci Article In 2006, Ma et al. presented an elegant theory for how populations of neurons might represent uncertainty to perform Bayesian inference. Critically, according to this theory, neural variability is no longer a nuisance, but rather a vital part of how the brain encodes probability distributions and performs computations with them. Elsevier Applied Science Publishing 2018-11 /pmc/articles/PMC6416224/ /pubmed/30366563 http://dx.doi.org/10.1016/j.tins.2018.09.003 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Echeveste, Rodrigo
Lengyel, Máté
The Redemption of Noise: Inference with Neural Populations
title The Redemption of Noise: Inference with Neural Populations
title_full The Redemption of Noise: Inference with Neural Populations
title_fullStr The Redemption of Noise: Inference with Neural Populations
title_full_unstemmed The Redemption of Noise: Inference with Neural Populations
title_short The Redemption of Noise: Inference with Neural Populations
title_sort redemption of noise: inference with neural populations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416224/
https://www.ncbi.nlm.nih.gov/pubmed/30366563
http://dx.doi.org/10.1016/j.tins.2018.09.003
work_keys_str_mv AT echevesterodrigo theredemptionofnoiseinferencewithneuralpopulations
AT lengyelmate theredemptionofnoiseinferencewithneuralpopulations
AT echevesterodrigo redemptionofnoiseinferencewithneuralpopulations
AT lengyelmate redemptionofnoiseinferencewithneuralpopulations