Cargando…
Defects, dopants and Mg diffusion in MgTiO(3)
Magnesium titanate is technologically important due to its excellent dielectric properties required in wireless communication system. Using atomistic simulation based on the classical pair potentials we study the defect chemistry, Mg and O diffusion and a variety of dopant incorporation at Mg and Ti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416248/ https://www.ncbi.nlm.nih.gov/pubmed/30867514 http://dx.doi.org/10.1038/s41598-019-40878-y |
_version_ | 1783403316424736768 |
---|---|
author | Kuganathan, Navaratnarajah Iyngaran, Poobalasuntharam Vovk, Ruslan Chroneos, Alexander |
author_facet | Kuganathan, Navaratnarajah Iyngaran, Poobalasuntharam Vovk, Ruslan Chroneos, Alexander |
author_sort | Kuganathan, Navaratnarajah |
collection | PubMed |
description | Magnesium titanate is technologically important due to its excellent dielectric properties required in wireless communication system. Using atomistic simulation based on the classical pair potentials we study the defect chemistry, Mg and O diffusion and a variety of dopant incorporation at Mg and Ti sites. The defect calculations suggest that cation anti-site defect is the most favourable defect process. The Mg Frenkel is the second most favourable intrinsic defect though the formation energy is highly endoergic. Higher overall activation energies (>3 eV) are observed for oxygen migration compared to those observed for magnesium (0.88 eV). Dopant substitution energies for a range of cations with charges varying from +2 to +4 were examined. Divalent dopants (Mn(2+), Fe(2+), Co(2+), Ca(2+) and Zn(2+)) on the Mg site exhibit low solution energies. Trivalent dopants prefer to occupy Mg site though their solution energies are high. Exothermic solution energies calculated for tetravalent dopants (Ge(4+) and Si(4+)) on the Ti site suggest the necessity of experimental verification. |
format | Online Article Text |
id | pubmed-6416248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64162482019-03-15 Defects, dopants and Mg diffusion in MgTiO(3) Kuganathan, Navaratnarajah Iyngaran, Poobalasuntharam Vovk, Ruslan Chroneos, Alexander Sci Rep Article Magnesium titanate is technologically important due to its excellent dielectric properties required in wireless communication system. Using atomistic simulation based on the classical pair potentials we study the defect chemistry, Mg and O diffusion and a variety of dopant incorporation at Mg and Ti sites. The defect calculations suggest that cation anti-site defect is the most favourable defect process. The Mg Frenkel is the second most favourable intrinsic defect though the formation energy is highly endoergic. Higher overall activation energies (>3 eV) are observed for oxygen migration compared to those observed for magnesium (0.88 eV). Dopant substitution energies for a range of cations with charges varying from +2 to +4 were examined. Divalent dopants (Mn(2+), Fe(2+), Co(2+), Ca(2+) and Zn(2+)) on the Mg site exhibit low solution energies. Trivalent dopants prefer to occupy Mg site though their solution energies are high. Exothermic solution energies calculated for tetravalent dopants (Ge(4+) and Si(4+)) on the Ti site suggest the necessity of experimental verification. Nature Publishing Group UK 2019-03-13 /pmc/articles/PMC6416248/ /pubmed/30867514 http://dx.doi.org/10.1038/s41598-019-40878-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kuganathan, Navaratnarajah Iyngaran, Poobalasuntharam Vovk, Ruslan Chroneos, Alexander Defects, dopants and Mg diffusion in MgTiO(3) |
title | Defects, dopants and Mg diffusion in MgTiO(3) |
title_full | Defects, dopants and Mg diffusion in MgTiO(3) |
title_fullStr | Defects, dopants and Mg diffusion in MgTiO(3) |
title_full_unstemmed | Defects, dopants and Mg diffusion in MgTiO(3) |
title_short | Defects, dopants and Mg diffusion in MgTiO(3) |
title_sort | defects, dopants and mg diffusion in mgtio(3) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416248/ https://www.ncbi.nlm.nih.gov/pubmed/30867514 http://dx.doi.org/10.1038/s41598-019-40878-y |
work_keys_str_mv | AT kuganathannavaratnarajah defectsdopantsandmgdiffusioninmgtio3 AT iyngaranpoobalasuntharam defectsdopantsandmgdiffusioninmgtio3 AT vovkruslan defectsdopantsandmgdiffusioninmgtio3 AT chroneosalexander defectsdopantsandmgdiffusioninmgtio3 |