Cargando…
A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load
Triple-layered composite plates are created by joining three composite layers using shear connectors. These layers, which are assumed to be always in contact and able to move relatively to each other during deformation, could be the same or different in geometric dimensions and material. They are ap...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416568/ https://www.ncbi.nlm.nih.gov/pubmed/30781542 http://dx.doi.org/10.3390/ma12040598 |
_version_ | 1783403380765360128 |
---|---|
author | Nguyen, Hoang-Nam Nguyen, Tan-Y. Tran, Ke Van Tran, Thanh Trung Nguyen, Truong-Thinh Phan, Van-Duc Do, Thom Van |
author_facet | Nguyen, Hoang-Nam Nguyen, Tan-Y. Tran, Ke Van Tran, Thanh Trung Nguyen, Truong-Thinh Phan, Van-Duc Do, Thom Van |
author_sort | Nguyen, Hoang-Nam |
collection | PubMed |
description | Triple-layered composite plates are created by joining three composite layers using shear connectors. These layers, which are assumed to be always in contact and able to move relatively to each other during deformation, could be the same or different in geometric dimensions and material. They are applied in various engineering fields such as ship-building, aircraft wing manufacturing, etc. However, there are only a few publications regarding the calculation of this kind of plate. This paper proposes novel equations, which utilize Mindlin’s theory and finite element modelling to simulate the forced vibration of triple-layered composite plates with layers connected by shear connectors subjected to a moving load. Moreover, a Matlab computation program is introduced to verify the reliability of the proposed equations, as well as the influence of some parameters, such as boundary conditions, the rigidity of the shear connector, thickness-to-length ratio, and the moving load velocity on the dynamic response of the composite plate. |
format | Online Article Text |
id | pubmed-6416568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64165682019-03-29 A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load Nguyen, Hoang-Nam Nguyen, Tan-Y. Tran, Ke Van Tran, Thanh Trung Nguyen, Truong-Thinh Phan, Van-Duc Do, Thom Van Materials (Basel) Article Triple-layered composite plates are created by joining three composite layers using shear connectors. These layers, which are assumed to be always in contact and able to move relatively to each other during deformation, could be the same or different in geometric dimensions and material. They are applied in various engineering fields such as ship-building, aircraft wing manufacturing, etc. However, there are only a few publications regarding the calculation of this kind of plate. This paper proposes novel equations, which utilize Mindlin’s theory and finite element modelling to simulate the forced vibration of triple-layered composite plates with layers connected by shear connectors subjected to a moving load. Moreover, a Matlab computation program is introduced to verify the reliability of the proposed equations, as well as the influence of some parameters, such as boundary conditions, the rigidity of the shear connector, thickness-to-length ratio, and the moving load velocity on the dynamic response of the composite plate. MDPI 2019-02-16 /pmc/articles/PMC6416568/ /pubmed/30781542 http://dx.doi.org/10.3390/ma12040598 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nguyen, Hoang-Nam Nguyen, Tan-Y. Tran, Ke Van Tran, Thanh Trung Nguyen, Truong-Thinh Phan, Van-Duc Do, Thom Van A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load |
title | A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load |
title_full | A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load |
title_fullStr | A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load |
title_full_unstemmed | A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load |
title_short | A Finite Element Model for Dynamic Analysis of Triple-Layer Composite Plates with Layers Connected by Shear Connectors Subjected to Moving Load |
title_sort | finite element model for dynamic analysis of triple-layer composite plates with layers connected by shear connectors subjected to moving load |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416568/ https://www.ncbi.nlm.nih.gov/pubmed/30781542 http://dx.doi.org/10.3390/ma12040598 |
work_keys_str_mv | AT nguyenhoangnam afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT nguyentany afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT trankevan afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT tranthanhtrung afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT nguyentruongthinh afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT phanvanduc afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT dothomvan afiniteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT nguyenhoangnam finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT nguyentany finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT trankevan finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT tranthanhtrung finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT nguyentruongthinh finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT phanvanduc finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload AT dothomvan finiteelementmodelfordynamicanalysisoftriplelayercompositeplateswithlayersconnectedbyshearconnectorssubjectedtomovingload |