Cargando…
Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface
The fabrication of macromolecular organic structures on surfaces is one major concern in materials science. Nanoribbons, linear polymers, and porous nanostructures have gained a lot of interest due to their possible applications ranging from nanotemplates, catalysis, optoelectronics, sensors, or dat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416628/ https://www.ncbi.nlm.nih.gov/pubmed/30813327 http://dx.doi.org/10.3390/ma12040662 |
_version_ | 1783403394742878208 |
---|---|
author | Pigot, Corentin Dumur, Frédéric |
author_facet | Pigot, Corentin Dumur, Frédéric |
author_sort | Pigot, Corentin |
collection | PubMed |
description | The fabrication of macromolecular organic structures on surfaces is one major concern in materials science. Nanoribbons, linear polymers, and porous nanostructures have gained a lot of interest due to their possible applications ranging from nanotemplates, catalysis, optoelectronics, sensors, or data storage. During decades, supramolecular chemistry has constituted an unavoidable approach for the design of well-organized structures on surfaces displaying a long-range order. Following these initial works, an important milestone has been established with the formation of covalent bonds between molecules. Resulting from this unprecedented approach, various nanostructures of improved thermal and chemical stability compared to those obtained by supramolecular chemistry and displaying unique and unprecedented properties have been developed. However, a major challenge exists: the growth control is very delicate and a thorough understanding of the complex mechanisms governing the on-surface chemistry is still needed. Recently, a new approach consisting in elaborating macromolecular structures by combining consecutive steps has been identified as a promising strategy to elaborate organic structures on surface. By designing precursors with a preprogrammed sequence of reactivity, a hierarchical or a sequential growth of 1D and 2D structures can be realized. In this review, the different reaction combinations used for the design of 1D and 2D structures are reported. To date, eight different sequences of reactions have been examined since 2008, evidencing the intense research activity existing in this field. |
format | Online Article Text |
id | pubmed-6416628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64166282019-03-29 Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface Pigot, Corentin Dumur, Frédéric Materials (Basel) Review The fabrication of macromolecular organic structures on surfaces is one major concern in materials science. Nanoribbons, linear polymers, and porous nanostructures have gained a lot of interest due to their possible applications ranging from nanotemplates, catalysis, optoelectronics, sensors, or data storage. During decades, supramolecular chemistry has constituted an unavoidable approach for the design of well-organized structures on surfaces displaying a long-range order. Following these initial works, an important milestone has been established with the formation of covalent bonds between molecules. Resulting from this unprecedented approach, various nanostructures of improved thermal and chemical stability compared to those obtained by supramolecular chemistry and displaying unique and unprecedented properties have been developed. However, a major challenge exists: the growth control is very delicate and a thorough understanding of the complex mechanisms governing the on-surface chemistry is still needed. Recently, a new approach consisting in elaborating macromolecular structures by combining consecutive steps has been identified as a promising strategy to elaborate organic structures on surface. By designing precursors with a preprogrammed sequence of reactivity, a hierarchical or a sequential growth of 1D and 2D structures can be realized. In this review, the different reaction combinations used for the design of 1D and 2D structures are reported. To date, eight different sequences of reactions have been examined since 2008, evidencing the intense research activity existing in this field. MDPI 2019-02-22 /pmc/articles/PMC6416628/ /pubmed/30813327 http://dx.doi.org/10.3390/ma12040662 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Pigot, Corentin Dumur, Frédéric Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface |
title | Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface |
title_full | Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface |
title_fullStr | Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface |
title_full_unstemmed | Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface |
title_short | Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface |
title_sort | recent advances of hierarchical and sequential growth of macromolecular organic structures on surface |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416628/ https://www.ncbi.nlm.nih.gov/pubmed/30813327 http://dx.doi.org/10.3390/ma12040662 |
work_keys_str_mv | AT pigotcorentin recentadvancesofhierarchicalandsequentialgrowthofmacromolecularorganicstructuresonsurface AT dumurfrederic recentadvancesofhierarchicalandsequentialgrowthofmacromolecularorganicstructuresonsurface |