Cargando…

Feasibility of using a low-cost head-mounted augmented reality device in the operating room

BACKGROUND: Augmented reality (AR) has great potential for improving image-guided neurosurgical procedures, but until recently, hardware was mostly custom-made and difficult to distribute. Currently, commercially available low-cost AR devices offer great potential for neurosurgery, but reports on te...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubben, Pieter L., Sinlae, Remir S. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416754/
https://www.ncbi.nlm.nih.gov/pubmed/31123633
http://dx.doi.org/10.4103/sni.sni_228_18
_version_ 1783403422063525888
author Kubben, Pieter L.
Sinlae, Remir S. N.
author_facet Kubben, Pieter L.
Sinlae, Remir S. N.
author_sort Kubben, Pieter L.
collection PubMed
description BACKGROUND: Augmented reality (AR) has great potential for improving image-guided neurosurgical procedures, but until recently, hardware was mostly custom-made and difficult to distribute. Currently, commercially available low-cost AR devices offer great potential for neurosurgery, but reports on technical feasibility are lacking. The goal of this pilot study is to evaluate the feasibility of using a low-cost commercially available head-mounted holographic AR device (the Microsoft Hololens) in the operating room. The Hololens is operated by performing specific hand gestures, which are recognized by the built-in camera of the device. This would allow the neurosurgeon to control the device “touch free” even while wearing a sterile surgical outfit. METHODS: The Hololens was tested in an operating room under two lighting conditions (general background theatre lighting only; and general background theatre lighting and operating lights) and wearing different surgical gloves (both bright and dark). All required hand gestures were performed, and voice recognition was evaluated against background noise consisting of two nurses talking at conversational speech level. RESULTS: Wearing comfort was sufficient, with and without regular glasses. All gestures were correctly classified regardless of lighting conditions or the sort of sterile gloves. Voice recognition was good. The visibility of the holograms was good if the device was configured to use high brightness for display. CONCLUSIONS: We demonstrate that using a commercially available low-cost head-mounted holographic AR device is feasible in a sterile surgical setting, under different lighting conditions and using different surgical gloves. Given the availability of freely available software for application development, neurosurgery can benefit from new opportunities for image-guided surgery.
format Online
Article
Text
id pubmed-6416754
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-64167542019-05-23 Feasibility of using a low-cost head-mounted augmented reality device in the operating room Kubben, Pieter L. Sinlae, Remir S. N. Surg Neurol Int Computational: Technical Note BACKGROUND: Augmented reality (AR) has great potential for improving image-guided neurosurgical procedures, but until recently, hardware was mostly custom-made and difficult to distribute. Currently, commercially available low-cost AR devices offer great potential for neurosurgery, but reports on technical feasibility are lacking. The goal of this pilot study is to evaluate the feasibility of using a low-cost commercially available head-mounted holographic AR device (the Microsoft Hololens) in the operating room. The Hololens is operated by performing specific hand gestures, which are recognized by the built-in camera of the device. This would allow the neurosurgeon to control the device “touch free” even while wearing a sterile surgical outfit. METHODS: The Hololens was tested in an operating room under two lighting conditions (general background theatre lighting only; and general background theatre lighting and operating lights) and wearing different surgical gloves (both bright and dark). All required hand gestures were performed, and voice recognition was evaluated against background noise consisting of two nurses talking at conversational speech level. RESULTS: Wearing comfort was sufficient, with and without regular glasses. All gestures were correctly classified regardless of lighting conditions or the sort of sterile gloves. Voice recognition was good. The visibility of the holograms was good if the device was configured to use high brightness for display. CONCLUSIONS: We demonstrate that using a commercially available low-cost head-mounted holographic AR device is feasible in a sterile surgical setting, under different lighting conditions and using different surgical gloves. Given the availability of freely available software for application development, neurosurgery can benefit from new opportunities for image-guided surgery. Medknow Publications & Media Pvt Ltd 2019-02-28 /pmc/articles/PMC6416754/ /pubmed/31123633 http://dx.doi.org/10.4103/sni.sni_228_18 Text en Copyright: © 2019 Surgical Neurology International http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Computational: Technical Note
Kubben, Pieter L.
Sinlae, Remir S. N.
Feasibility of using a low-cost head-mounted augmented reality device in the operating room
title Feasibility of using a low-cost head-mounted augmented reality device in the operating room
title_full Feasibility of using a low-cost head-mounted augmented reality device in the operating room
title_fullStr Feasibility of using a low-cost head-mounted augmented reality device in the operating room
title_full_unstemmed Feasibility of using a low-cost head-mounted augmented reality device in the operating room
title_short Feasibility of using a low-cost head-mounted augmented reality device in the operating room
title_sort feasibility of using a low-cost head-mounted augmented reality device in the operating room
topic Computational: Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416754/
https://www.ncbi.nlm.nih.gov/pubmed/31123633
http://dx.doi.org/10.4103/sni.sni_228_18
work_keys_str_mv AT kubbenpieterl feasibilityofusingalowcostheadmountedaugmentedrealitydeviceintheoperatingroom
AT sinlaeremirsn feasibilityofusingalowcostheadmountedaugmentedrealitydeviceintheoperatingroom