Cargando…

Transcriptional profiling of PPARα−/− and CREB3L3−/− livers reveals disparate regulation of hepatoproliferative and metabolic functions of PPARα

BACKGROUND: Peroxisome Proliferator-Activated receptor α (PPARα) and cAMP-Responsive Element Binding Protein 3-Like 3 (CREB3L3) are transcription factors involved in the regulation of lipid metabolism in the liver. The aim of the present study was to characterize the interrelationship between PPARα...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruppert, Philip M. M., Park, Jong-Gil, Xu, Xu, Hur, Kyu Yeon, Lee, Ann-Hwee, Kersten, Sander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416987/
https://www.ncbi.nlm.nih.gov/pubmed/30866796
http://dx.doi.org/10.1186/s12864-019-5563-y
Descripción
Sumario:BACKGROUND: Peroxisome Proliferator-Activated receptor α (PPARα) and cAMP-Responsive Element Binding Protein 3-Like 3 (CREB3L3) are transcription factors involved in the regulation of lipid metabolism in the liver. The aim of the present study was to characterize the interrelationship between PPARα and CREB3L3 in regulating hepatic gene expression. Male wild-type, PPARα−/−, CREB3L3−/− and combined PPARα/CREB3L3−/− mice were subjected to a 16-h fast or 4 days of ketogenic diet. Whole genome expression analysis was performed on liver samples. RESULTS: Under conditions of overnight fasting, the effects of PPARα ablation and CREB3L3 ablation on plasma triglyceride, plasma β-hydroxybutyrate, and hepatic gene expression were largely disparate, and showed only limited interdependence. Gene and pathway analysis underscored the importance of CREB3L3 in regulating (apo)lipoprotein metabolism, and of PPARα as master regulator of intracellular lipid metabolism. A small number of genes, including Fgf21 and Mfsd2a, were under dual control of PPARα and CREB3L3. By contrast, a strong interaction between PPARα and CREB3L3 ablation was observed during ketogenic diet feeding. Specifically, the pronounced effects of CREB3L3 ablation on liver damage and hepatic gene expression during ketogenic diet were almost completely abolished by the simultaneous ablation of PPARα. Loss of CREB3L3 influenced PPARα signalling in two major ways. Firstly, it reduced expression of PPARα and its target genes involved in fatty acid oxidation and ketogenesis. In stark contrast, the hepatoproliferative function of PPARα was markedly activated by loss of CREB3L3. CONCLUSIONS: These data indicate that CREB3L3 ablation uncouples the hepatoproliferative and lipid metabolic effects of PPARα. Overall, except for the shared regulation of a very limited number of genes, the roles of PPARα and CREB3L3 in hepatic lipid metabolism are clearly distinct and are highly dependent on dietary status. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5563-y) contains supplementary material, which is available to authorized users.