Cargando…
Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs
BACKGROUND: To date, the molecular mechanisms that underlie residual feed intake (RFI) in pigs are unknown. Results from different genome-wide association studies and gene expression analyses are not always consistent. The aim of this research was to use machine learning to identify genes associated...
Autores principales: | Piles, Miriam, Fernandez-Lozano, Carlos, Velasco-Galilea, María, González-Rodríguez, Olga, Sánchez, Juan Pablo, Torrallardona, David, Ballester, Maria, Quintanilla, Raquel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417084/ https://www.ncbi.nlm.nih.gov/pubmed/30866799 http://dx.doi.org/10.1186/s12711-019-0453-y |
Ejemplares similares
-
Integrative approach using liver and duodenum RNA-Seq data identifies candidate genes and pathways associated with feed efficiency in pigs
por: Ramayo-Caldas, Yuliaxis, et al.
Publicado: (2018) -
The value of gut microbiota to predict feed efficiency and growth of rabbits under different feeding regimes
por: Velasco-Galilea, María, et al.
Publicado: (2021) -
Genetic parameters and expected responses to selection for components of feed efficiency in a Duroc pig line
por: Sánchez, Juan P., et al.
Publicado: (2017) -
Genome‐wide association study for feed efficiency in collective cage‐raised rabbits under full and restricted feeding
por: Sánchez, J. P., et al.
Publicado: (2020) -
Machine Learning Prediction of Crossbred Pig Feed Efficiency and Growth Rate From Single Nucleotide Polymorphisms
por: Tusell, Llibertat, et al.
Publicado: (2020)