Cargando…

Filamentous cyanobacteria triples oil production in seawater-based medium supplemented with industrial waste: monosodium glutamate residue

BACKGROUND: To overcome the daunting technical and economic barriers of algal biofuels, we evaluated whether seawater can be a viable medium for economically producing filamentous Spirulina subsalsa as feedstock, using monosodium glutamate residue (MSGR) produced by the glutamate extraction process...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Liqun, Sun, Jiongming, Nie, Changliang, Li, Yizhen, Jenkins, Jackson, Pei, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417114/
https://www.ncbi.nlm.nih.gov/pubmed/30911333
http://dx.doi.org/10.1186/s13068-019-1391-1
Descripción
Sumario:BACKGROUND: To overcome the daunting technical and economic barriers of algal biofuels, we evaluated whether seawater can be a viable medium for economically producing filamentous Spirulina subsalsa as feedstock, using monosodium glutamate residue (MSGR) produced by the glutamate extraction process as an inexpensive nutrient source. RESULTS: Spirulina subsalsa cannot grow in pure seawater, but exhibited faster biomass accumulation in seawater supplemented with MSGR than in freshwater medium (modified Zarrouk medium). Introducing seawater into media ensured this cyanobacterium obtained high lipid productivity (120 mg/L/day) and suffered limited bacterial infections during growth. Moreover, the yields of protein, carotenoids and phytols were also improved in seawater mixed with MSGR. S. subsalsa exhibited high biomass and lipid productivity in bag bioreactors with 5- and 10-L medium, demonstrating the potential of this cultivation method for scaling up. Moreover, seawater can produce more biomass through medium reuse. Reused seawater medium yielded 72% of lipid content compared to pristine medium. The reason that S. subsalsa grew well in seawater with MSGR is its proficient adaptation to salinity, which included elongation and desaturation of fatty acids, accumulation of lysine and methionine, and secretion of sodium. The nutrients provided by MSGR, like organic materials, played an important role in these responses. CONCLUSION: Spirulina subsalsa has an efficient system to adapt to saline ambiance in seawater. When supplemented with MSGR, seawater is a great potential medium to produce S. subsalsa in large scale as biofuel feedstock. Meanwhile, value-added products can be derived from the ample protein and pigments that can broaden the range of biomass application and improve this biorefinery economics. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13068-019-1391-1) contains supplementary material, which is available to authorized users.