Cargando…
clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be ma...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417140/ https://www.ncbi.nlm.nih.gov/pubmed/30866997 http://dx.doi.org/10.1186/s13059-019-1645-z |
Sumario: | Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-019-1645-z) contains supplementary material, which is available to authorized users. |
---|