Cargando…
clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be ma...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417140/ https://www.ncbi.nlm.nih.gov/pubmed/30866997 http://dx.doi.org/10.1186/s13059-019-1645-z |
_version_ | 1783403506440339456 |
---|---|
author | Campbell, Kieran R. Steif, Adi Laks, Emma Zahn, Hans Lai, Daniel McPherson, Andrew Farahani, Hossein Kabeer, Farhia O’Flanagan, Ciara Biele, Justina Brimhall, Jazmine Wang, Beixi Walters, Pascale Consortium, IMAXT Bouchard-Côté, Alexandre Aparicio, Samuel Shah, Sohrab P. |
author_facet | Campbell, Kieran R. Steif, Adi Laks, Emma Zahn, Hans Lai, Daniel McPherson, Andrew Farahani, Hossein Kabeer, Farhia O’Flanagan, Ciara Biele, Justina Brimhall, Jazmine Wang, Beixi Walters, Pascale Consortium, IMAXT Bouchard-Côté, Alexandre Aparicio, Samuel Shah, Sohrab P. |
author_sort | Campbell, Kieran R. |
collection | PubMed |
description | Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-019-1645-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6417140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-64171402019-03-25 clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers Campbell, Kieran R. Steif, Adi Laks, Emma Zahn, Hans Lai, Daniel McPherson, Andrew Farahani, Hossein Kabeer, Farhia O’Flanagan, Ciara Biele, Justina Brimhall, Jazmine Wang, Beixi Walters, Pascale Consortium, IMAXT Bouchard-Côté, Alexandre Aparicio, Samuel Shah, Sohrab P. Genome Biol Method Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-019-1645-z) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-12 /pmc/articles/PMC6417140/ /pubmed/30866997 http://dx.doi.org/10.1186/s13059-019-1645-z Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method Campbell, Kieran R. Steif, Adi Laks, Emma Zahn, Hans Lai, Daniel McPherson, Andrew Farahani, Hossein Kabeer, Farhia O’Flanagan, Ciara Biele, Justina Brimhall, Jazmine Wang, Beixi Walters, Pascale Consortium, IMAXT Bouchard-Côté, Alexandre Aparicio, Samuel Shah, Sohrab P. clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers |
title | clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers |
title_full | clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers |
title_fullStr | clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers |
title_full_unstemmed | clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers |
title_short | clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers |
title_sort | clonealign: statistical integration of independent single-cell rna and dna sequencing data from human cancers |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417140/ https://www.ncbi.nlm.nih.gov/pubmed/30866997 http://dx.doi.org/10.1186/s13059-019-1645-z |
work_keys_str_mv | AT campbellkieranr clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT steifadi clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT laksemma clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT zahnhans clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT laidaniel clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT mcphersonandrew clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT farahanihossein clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT kabeerfarhia clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT oflanaganciara clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT bielejustina clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT brimhalljazmine clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT wangbeixi clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT walterspascale clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT consortiumimaxt clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT bouchardcotealexandre clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT apariciosamuel clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers AT shahsohrabp clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers |