Cargando…

clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers

Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Kieran R., Steif, Adi, Laks, Emma, Zahn, Hans, Lai, Daniel, McPherson, Andrew, Farahani, Hossein, Kabeer, Farhia, O’Flanagan, Ciara, Biele, Justina, Brimhall, Jazmine, Wang, Beixi, Walters, Pascale, Consortium, IMAXT, Bouchard-Côté, Alexandre, Aparicio, Samuel, Shah, Sohrab P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417140/
https://www.ncbi.nlm.nih.gov/pubmed/30866997
http://dx.doi.org/10.1186/s13059-019-1645-z
_version_ 1783403506440339456
author Campbell, Kieran R.
Steif, Adi
Laks, Emma
Zahn, Hans
Lai, Daniel
McPherson, Andrew
Farahani, Hossein
Kabeer, Farhia
O’Flanagan, Ciara
Biele, Justina
Brimhall, Jazmine
Wang, Beixi
Walters, Pascale
Consortium, IMAXT
Bouchard-Côté, Alexandre
Aparicio, Samuel
Shah, Sohrab P.
author_facet Campbell, Kieran R.
Steif, Adi
Laks, Emma
Zahn, Hans
Lai, Daniel
McPherson, Andrew
Farahani, Hossein
Kabeer, Farhia
O’Flanagan, Ciara
Biele, Justina
Brimhall, Jazmine
Wang, Beixi
Walters, Pascale
Consortium, IMAXT
Bouchard-Côté, Alexandre
Aparicio, Samuel
Shah, Sohrab P.
author_sort Campbell, Kieran R.
collection PubMed
description Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-019-1645-z) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6417140
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-64171402019-03-25 clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers Campbell, Kieran R. Steif, Adi Laks, Emma Zahn, Hans Lai, Daniel McPherson, Andrew Farahani, Hossein Kabeer, Farhia O’Flanagan, Ciara Biele, Justina Brimhall, Jazmine Wang, Beixi Walters, Pascale Consortium, IMAXT Bouchard-Côté, Alexandre Aparicio, Samuel Shah, Sohrab P. Genome Biol Method Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-019-1645-z) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-12 /pmc/articles/PMC6417140/ /pubmed/30866997 http://dx.doi.org/10.1186/s13059-019-1645-z Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Campbell, Kieran R.
Steif, Adi
Laks, Emma
Zahn, Hans
Lai, Daniel
McPherson, Andrew
Farahani, Hossein
Kabeer, Farhia
O’Flanagan, Ciara
Biele, Justina
Brimhall, Jazmine
Wang, Beixi
Walters, Pascale
Consortium, IMAXT
Bouchard-Côté, Alexandre
Aparicio, Samuel
Shah, Sohrab P.
clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
title clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
title_full clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
title_fullStr clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
title_full_unstemmed clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
title_short clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers
title_sort clonealign: statistical integration of independent single-cell rna and dna sequencing data from human cancers
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417140/
https://www.ncbi.nlm.nih.gov/pubmed/30866997
http://dx.doi.org/10.1186/s13059-019-1645-z
work_keys_str_mv AT campbellkieranr clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT steifadi clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT laksemma clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT zahnhans clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT laidaniel clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT mcphersonandrew clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT farahanihossein clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT kabeerfarhia clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT oflanaganciara clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT bielejustina clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT brimhalljazmine clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT wangbeixi clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT walterspascale clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT consortiumimaxt clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT bouchardcotealexandre clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT apariciosamuel clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers
AT shahsohrabp clonealignstatisticalintegrationofindependentsinglecellrnaanddnasequencingdatafromhumancancers