Cargando…

Performance of single skin masonry walls subjected to hydraulic loading

Property owners are facing increasing threats from flooding and in response are likely to turn to products designed to waterproof or ‘seal’ the outside of the building in an effort to prevent the ingress of flood water. However, very limited research has been conducted on the effect of this sealing...

Descripción completa

Detalles Bibliográficos
Autores principales: Herbert, D. M., Gardner, D. R., Harbottle, M., Hughes, T. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417385/
https://www.ncbi.nlm.nih.gov/pubmed/30956532
http://dx.doi.org/10.1617/s11527-018-1222-z
Descripción
Sumario:Property owners are facing increasing threats from flooding and in response are likely to turn to products designed to waterproof or ‘seal’ the outside of the building in an effort to prevent the ingress of flood water. However, very limited research has been conducted on the effect of this sealing action and the consequent hydraulic load acting upon the structure of the building. The theoretical safe application of waterproofing products has been suggested to be between 0.6 and 1 m (published guidance suggests 0.9 m), although the experimental evidence supporting these suggestions is either absent or limited in nature. This paper presents the findings of an experimental programme that has examined the effect of out-of-plane hydrostatic loading on masonry walls typical of domestic or commercial buildings. The study, conducted at 1/6th scale using a geotechnical centrifuge considers wall panels constructed from a variety of masonry units (autoclaved aerated concrete block, brick and brick-block) bound together with two different types of mortar. The wall panels were subject to an axial load representative of 1 storey of loading and were simply supported on all 4 sides. The load—out-of-plane deflection response of the panels was captured by a 3D digital image correlation system, and the water level at failure was compared to that predicted from previous research and the established yield line analysis method with encouraging results. When partial material and load factors were taken into consideration the results illustrated that a safe sealing height of 0.9 m, as quoted in the literature, would generally be inappropriate, whilst the safe sealing height of 0.6 m was not suitable for every case investigated. This supports the need for a suitable approach for the calculation of water levels at failure rather than the use of fixed values given in published literature.