Cargando…
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies
Transcriptome-wide association studies (TWAS) have recently gained great attention due to their ability to prioritize complex trait-associated genes and promote potential therapeutics development for complex human diseases. TWAS integrates genotypic data with expression quantitative trait loci (eQTL...
Autores principales: | Li, Binglan, Veturi, Yogasudha, Bradford, Yuki, Verma, Shefali S., Verma, Anurag, Lucas, Anastasia M., Haas, David W., Ritchie, Marylyn D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417797/ https://www.ncbi.nlm.nih.gov/pubmed/30864331 |
Ejemplares similares
-
Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression()
por: Li, Binglan, et al.
Publicado: (2018) -
Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults
por: Li, Binglan, et al.
Publicado: (2021) -
Collective feature selection to identify crucial epistatic variants
por: Verma, Shefali S., et al.
Publicado: (2018) -
A simulation study investigating power estimates in phenome-wide association studies
por: Verma, Anurag, et al.
Publicado: (2018) -
Rare variants in drug target genes contributing to complex diseases, phenome-wide
por: Verma, Shefali Setia, et al.
Publicado: (2018)