Cargando…
Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies
Accurately estimating performance accuracy of machine learning classifiers is of fundamental importance in biomedical research with potentially societal consequences upon the deployment of best-performing tools in everyday life. Although classification has been extensively studied over the past deca...
Autores principales: | Ramola, Rashika, Jain, Shantanu, Radivojac, Predrag |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417800/ https://www.ncbi.nlm.nih.gov/pubmed/30864316 |
Ejemplares similares
-
Using Association Rules to Understand the Risk of Adverse Pregnancy Outcomes in a Diverse Population
por: Chu, Hoyin, et al.
Publicado: (2023) -
The field of protein function prediction as viewed by different domain scientists
por: Ramola, Rashika, et al.
Publicado: (2022) -
Classification of unlabeled online media
por: Prakash, Sakthi Kumar Arul, et al.
Publicado: (2021) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016)