Cargando…
PLATYPUS: A Multiple–View Learning Predictive Framework for Cancer Drug Sensitivity Prediction
Cancer is a complex collection of diseases that are to some degree unique to each patient. Precision oncology aims to identify the best drug treatment regime using molecular data on tumor samples. While omics-level data is becoming more widely available for tumor specimens, the datasets upon which c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417802/ https://www.ncbi.nlm.nih.gov/pubmed/30864317 |
Sumario: | Cancer is a complex collection of diseases that are to some degree unique to each patient. Precision oncology aims to identify the best drug treatment regime using molecular data on tumor samples. While omics-level data is becoming more widely available for tumor specimens, the datasets upon which co learning methods can be trained vary in coverage from sample to sample and from data type to data type. Methods that can ‘connect the dots’ to leverage more of the information provided by these studies could offer major advantages for maximizing predictive potential. We introduce a multi-view machine-learning strategy called PLATYPUS that builds ‘views’ from multiple data sources that are all used as features for predicting patient outcomes. We show that a learning strategy that finds agreement across the views on unlabeled data increases the performance of the learning methods over any single view. We illustrate the power of the approach by deriving signatures for drug sensitivity in a large cancer cell line database. Code and additional information are available from the PLATYPUS website https://sysbiowiki.soe.ucsc.edu/platypus. |
---|