Cargando…
Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics
Single-cell RNA sequencing (scRNA-seq) is a powerful tool to profile the transcriptomes of a large number of individual cells at a high resolution. These data usually contain measurements of gene expression for many genes in thousands or tens of thousands of cells, though some datasets now reach the...
Autores principales: | Hu, Qiwen, Greene, Casey S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417816/ https://www.ncbi.nlm.nih.gov/pubmed/30963075 |
Ejemplares similares
-
A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis
por: Lin, Eugene, et al.
Publicado: (2020) -
VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
por: Wang, Dongfang, et al.
Publicado: (2018) -
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
por: Raimundo, Felix, et al.
Publicado: (2020) -
ScInfoVAE: interpretable dimensional reduction of single cell transcription data with variational autoencoders and extended mutual information regularization
por: Pan, Weiquan, et al.
Publicado: (2023) -
Deep learning on the 2-dimensional Ising model to extract the crossover region with a variational autoencoder
por: Walker, Nicholas, et al.
Publicado: (2020)