Cargando…
Topological Methods for Visualization and Analysis of High Dimensional Single-Cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) techniques have been very powerful in analyzing heterogeneous cell population and identifying cell types. Visualizing scRNA-seq data can help researchers effectively extract meaningful biological information and make new discoveries. While commonly used scRNA-s...
Autores principales: | Wang, Tongxin, Johnson, Travis, Zhang, Jie, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417818/ https://www.ncbi.nlm.nih.gov/pubmed/30963074 |
Ejemplares similares
-
BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes
por: Wang, Tongxin, et al.
Publicado: (2019) -
A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
por: Luo, Zixiang, et al.
Publicado: (2021) -
Topological methods in data analysis and visualization: theory, algorithms, and applications
por: Pascucci, Valerio, et al.
Publicado: (2011) -
Topological and statistical methods for complex data: tackling large-scale, high-dimensional, and multivariate data spaces
por: Bennett, Janine, et al.
Publicado: (2015) -
Topological methods in data analysis and visualization V: theory, algorithms, and applications
por: Carr, Hamish, et al.
Publicado: (2020)