Cargando…
Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature
Phylogeography research involving virus spread and tree reconstruction relies on accurate geographic locations of infected hosts. Insufficient level of geographic information in nucleotide sequence repositories such as GenBank motivates the use of natural language processing methods for extracting g...
Autores principales: | Magge, Arjun, Weissenbacher, Davy, Sarker, Abeed, Scotch, Matthew, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417823/ https://www.ncbi.nlm.nih.gov/pubmed/30864314 |
Ejemplares similares
-
Deep neural networks and distant supervision for geographic location mention extraction
por: Magge, Arjun, et al.
Publicado: (2018) -
Extracting geographic locations from the literature for virus phylogeography using supervised and distant supervision methods
por: Weissenbacher, Davy, et al.
Publicado: (2017) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
SEED: Symptom Extraction from English Social Media Posts using Deep Learning and Transfer Learning
por: Magge, Arjun, et al.
Publicado: (2022) -
Comment on: “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts”
por: Magge, Arjun, et al.
Publicado: (2019)