Cargando…

A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis

This paper presents an exploratory analysis of the mitochondrial DNA (mtDNA) of 32 species in the subphylum Vertebrata, divided in 7 taxonomic classes. Multiple stochastic parameters, such as the Hurst and detrended fluctuation analysis (DFA) exponents, Shannon entropy, and Chargaff ratio are comput...

Descripción completa

Detalles Bibliográficos
Autores principales: Corona-Ruiz, M., Hernandez-Cabrera, Francisco, Cantú-González, José Roberto, González-Amezcua, O., Javier Almaguer, Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418022/
https://www.ncbi.nlm.nih.gov/pubmed/30906309
http://dx.doi.org/10.3389/fgene.2019.00066
_version_ 1783403644257828864
author Corona-Ruiz, M.
Hernandez-Cabrera, Francisco
Cantú-González, José Roberto
González-Amezcua, O.
Javier Almaguer, Francisco
author_facet Corona-Ruiz, M.
Hernandez-Cabrera, Francisco
Cantú-González, José Roberto
González-Amezcua, O.
Javier Almaguer, Francisco
author_sort Corona-Ruiz, M.
collection PubMed
description This paper presents an exploratory analysis of the mitochondrial DNA (mtDNA) of 32 species in the subphylum Vertebrata, divided in 7 taxonomic classes. Multiple stochastic parameters, such as the Hurst and detrended fluctuation analysis (DFA) exponents, Shannon entropy, and Chargaff ratio are computed for each DNA sequence. The biological interpretation of these parameters leads to defining a triplet of novel indices. These new functions incorporate the long-range correlations, the probability of occurrence of nucleic bases, and the ratio of pyrimidines-to-purines. Results suggest that relevant regions in mtDNA can be located using the proposed indices. Furthermore, early results from clustering algorithms indicate that the indices introduced might be useful in phylogenetic studies.
format Online
Article
Text
id pubmed-6418022
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-64180222019-03-22 A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis Corona-Ruiz, M. Hernandez-Cabrera, Francisco Cantú-González, José Roberto González-Amezcua, O. Javier Almaguer, Francisco Front Genet Genetics This paper presents an exploratory analysis of the mitochondrial DNA (mtDNA) of 32 species in the subphylum Vertebrata, divided in 7 taxonomic classes. Multiple stochastic parameters, such as the Hurst and detrended fluctuation analysis (DFA) exponents, Shannon entropy, and Chargaff ratio are computed for each DNA sequence. The biological interpretation of these parameters leads to defining a triplet of novel indices. These new functions incorporate the long-range correlations, the probability of occurrence of nucleic bases, and the ratio of pyrimidines-to-purines. Results suggest that relevant regions in mtDNA can be located using the proposed indices. Furthermore, early results from clustering algorithms indicate that the indices introduced might be useful in phylogenetic studies. Frontiers Media S.A. 2019-03-08 /pmc/articles/PMC6418022/ /pubmed/30906309 http://dx.doi.org/10.3389/fgene.2019.00066 Text en Copyright © 2019 Corona-Ruiz, Hernandez-Cabrera, Cantú-González, González-Amezcua and Javier Almaguer. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Corona-Ruiz, M.
Hernandez-Cabrera, Francisco
Cantú-González, José Roberto
González-Amezcua, O.
Javier Almaguer, Francisco
A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis
title A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis
title_full A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis
title_fullStr A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis
title_full_unstemmed A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis
title_short A Stochastic Phylogenetic Algorithm for Mitochondrial DNA Analysis
title_sort stochastic phylogenetic algorithm for mitochondrial dna analysis
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418022/
https://www.ncbi.nlm.nih.gov/pubmed/30906309
http://dx.doi.org/10.3389/fgene.2019.00066
work_keys_str_mv AT coronaruizm astochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT hernandezcabrerafrancisco astochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT cantugonzalezjoseroberto astochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT gonzalezamezcuao astochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT javieralmaguerfrancisco astochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT coronaruizm stochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT hernandezcabrerafrancisco stochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT cantugonzalezjoseroberto stochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT gonzalezamezcuao stochasticphylogeneticalgorithmformitochondrialdnaanalysis
AT javieralmaguerfrancisco stochasticphylogeneticalgorithmformitochondrialdnaanalysis