Cargando…
A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418072/ https://www.ncbi.nlm.nih.gov/pubmed/30306458 http://dx.doi.org/10.1007/s13238-018-0575-y |
_version_ | 1783403656100446208 |
---|---|
author | Zhang, Xiaoya Peng, Xiaohong Han, Chengsheng Zhu, Wenzhen Wei, Lisi Zhang, Yulin Wang, Yi Zhang, Xiuqin Tang, Hao Zhang, Jianshe Xu, Xiaojun Feng, Fengping Xue, Yanhong Yao, Erlin Tan, Guangming Xu, Tao Chen, Liangyi |
author_facet | Zhang, Xiaoya Peng, Xiaohong Han, Chengsheng Zhu, Wenzhen Wei, Lisi Zhang, Yulin Wang, Yi Zhang, Xiuqin Tang, Hao Zhang, Jianshe Xu, Xiaojun Feng, Fengping Xue, Yanhong Yao, Erlin Tan, Guangming Xu, Tao Chen, Liangyi |
author_sort | Zhang, Xiaoya |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-6418072 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Higher Education Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-64180722019-04-03 A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies Zhang, Xiaoya Peng, Xiaohong Han, Chengsheng Zhu, Wenzhen Wei, Lisi Zhang, Yulin Wang, Yi Zhang, Xiuqin Tang, Hao Zhang, Jianshe Xu, Xiaojun Feng, Fengping Xue, Yanhong Yao, Erlin Tan, Guangming Xu, Tao Chen, Liangyi Protein Cell Letter Higher Education Press 2018-10-10 2019-04 /pmc/articles/PMC6418072/ /pubmed/30306458 http://dx.doi.org/10.1007/s13238-018-0575-y Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Letter Zhang, Xiaoya Peng, Xiaohong Han, Chengsheng Zhu, Wenzhen Wei, Lisi Zhang, Yulin Wang, Yi Zhang, Xiuqin Tang, Hao Zhang, Jianshe Xu, Xiaojun Feng, Fengping Xue, Yanhong Yao, Erlin Tan, Guangming Xu, Tao Chen, Liangyi A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
title | A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
title_full | A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
title_fullStr | A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
title_full_unstemmed | A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
title_short | A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
title_sort | unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418072/ https://www.ncbi.nlm.nih.gov/pubmed/30306458 http://dx.doi.org/10.1007/s13238-018-0575-y |
work_keys_str_mv | AT zhangxiaoya aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT pengxiaohong aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT hanchengsheng aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhuwenzhen aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT weilisi aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangyulin aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT wangyi aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangxiuqin aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT tanghao aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangjianshe aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT xuxiaojun aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT fengfengping aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT xueyanhong aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT yaoerlin aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT tanguangming aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT xutao aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT chenliangyi aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangxiaoya unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT pengxiaohong unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT hanchengsheng unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhuwenzhen unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT weilisi unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangyulin unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT wangyi unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangxiuqin unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT tanghao unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT zhangjianshe unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT xuxiaojun unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT fengfengping unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT xueyanhong unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT yaoerlin unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT tanguangming unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT xutao unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies AT chenliangyi unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies |