Cargando…

A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies

Detalles Bibliográficos
Autores principales: Zhang, Xiaoya, Peng, Xiaohong, Han, Chengsheng, Zhu, Wenzhen, Wei, Lisi, Zhang, Yulin, Wang, Yi, Zhang, Xiuqin, Tang, Hao, Zhang, Jianshe, Xu, Xiaojun, Feng, Fengping, Xue, Yanhong, Yao, Erlin, Tan, Guangming, Xu, Tao, Chen, Liangyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Higher Education Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418072/
https://www.ncbi.nlm.nih.gov/pubmed/30306458
http://dx.doi.org/10.1007/s13238-018-0575-y
_version_ 1783403656100446208
author Zhang, Xiaoya
Peng, Xiaohong
Han, Chengsheng
Zhu, Wenzhen
Wei, Lisi
Zhang, Yulin
Wang, Yi
Zhang, Xiuqin
Tang, Hao
Zhang, Jianshe
Xu, Xiaojun
Feng, Fengping
Xue, Yanhong
Yao, Erlin
Tan, Guangming
Xu, Tao
Chen, Liangyi
author_facet Zhang, Xiaoya
Peng, Xiaohong
Han, Chengsheng
Zhu, Wenzhen
Wei, Lisi
Zhang, Yulin
Wang, Yi
Zhang, Xiuqin
Tang, Hao
Zhang, Jianshe
Xu, Xiaojun
Feng, Fengping
Xue, Yanhong
Yao, Erlin
Tan, Guangming
Xu, Tao
Chen, Liangyi
author_sort Zhang, Xiaoya
collection PubMed
description
format Online
Article
Text
id pubmed-6418072
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Higher Education Press
record_format MEDLINE/PubMed
spelling pubmed-64180722019-04-03 A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies Zhang, Xiaoya Peng, Xiaohong Han, Chengsheng Zhu, Wenzhen Wei, Lisi Zhang, Yulin Wang, Yi Zhang, Xiuqin Tang, Hao Zhang, Jianshe Xu, Xiaojun Feng, Fengping Xue, Yanhong Yao, Erlin Tan, Guangming Xu, Tao Chen, Liangyi Protein Cell Letter Higher Education Press 2018-10-10 2019-04 /pmc/articles/PMC6418072/ /pubmed/30306458 http://dx.doi.org/10.1007/s13238-018-0575-y Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Letter
Zhang, Xiaoya
Peng, Xiaohong
Han, Chengsheng
Zhu, Wenzhen
Wei, Lisi
Zhang, Yulin
Wang, Yi
Zhang, Xiuqin
Tang, Hao
Zhang, Jianshe
Xu, Xiaojun
Feng, Fengping
Xue, Yanhong
Yao, Erlin
Tan, Guangming
Xu, Tao
Chen, Liangyi
A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
title A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
title_full A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
title_fullStr A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
title_full_unstemmed A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
title_short A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
title_sort unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418072/
https://www.ncbi.nlm.nih.gov/pubmed/30306458
http://dx.doi.org/10.1007/s13238-018-0575-y
work_keys_str_mv AT zhangxiaoya aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT pengxiaohong aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT hanchengsheng aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhuwenzhen aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT weilisi aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangyulin aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT wangyi aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangxiuqin aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT tanghao aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangjianshe aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT xuxiaojun aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT fengfengping aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT xueyanhong aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT yaoerlin aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT tanguangming aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT xutao aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT chenliangyi aunifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangxiaoya unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT pengxiaohong unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT hanchengsheng unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhuwenzhen unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT weilisi unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangyulin unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT wangyi unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangxiuqin unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT tanghao unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT zhangjianshe unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT xuxiaojun unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT fengfengping unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT xueyanhong unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT yaoerlin unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT tanguangming unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT xutao unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies
AT chenliangyi unifieddeeplearningnetworktoaccuratelysegmentinsulingranulesofdifferentanimalmodelsimagedunderdifferentelectronmicroscopymethodologies